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Computer Development Milestones

Computers have gone through two major stages of development: mechanical and
electronic. Prior to 1945, computers were made with mechanical or electromechanical

parts. The earliest mechanical computer can be traced back to 500 BC in the form of the
abacus used in China. The abacus is manually operated to perform decimal arithmetic
with carry propagation digit by digit.

Blaise Pascal built a mechanical adder/subtractor in France in 1642. Charles Bab-
bage designed a difference engine in England for polynomial evaluation in 1827. Konrad
Zuse built the first binary mechanical computer in Germany in 1941. Howard Aiken
proposed the very first electromechanical decimal computer, which was built as the
Harvard Mark I by IBM in 1944, Both Zuse's and Aiken’s machines were designed for
gener a.l- purpose comput ations.

Computer Generations Over the past five decades, electronic computers have gone
through five generations of development. Table 1.1 provides a summary of the five
generations of electronic computer development. Each of the first three generations
lasted about 10 years. The fourth generation covered a time span of 15 years. We have
just entered the fifth generation with the use of processors and memory devices with
more than 1 million transistors on a single silicon chip.

Generation Technology and Software and Representative
Architecture Applications Systems
First Vacuum tubes and relay Machine/assembly lan- ENIAC,
(1945-54) memories, CPU driven by guages, single user, no sub- Princeton IAS,
PC and accumulator, routine linkage, IBM 701.
fixed-point arithmetic. programmed [/O using CPU.
Second Discrete transistors and HLL used with compilers, TBM 7090,
(1955-64) core memories, subroutine libraries, batch CDC 1604,
floating-point arithmetic, processing monitoy. Univac LARC.
I/0O processors, multiplexed
memory access.
Third Integrated circuits (SSI/- Multiprogramming and time- | IBM 360/370,
(1965-74) MSI), microprogramming, sharing OS, multiuser appli- | CDC 6600,
pipelining, cache, and cations, TI-ASC,
lookahead processors. PDP-8.
Fourth LSI/VLSI and semiconduc- | Multiprocessor OS5, langua- VAX 9000,
(1975-90) tor memory, multiproces- ges, compilers, and environ- |Cray X-MP,
sors, vector supercomput- ments for parallel processing. | IBM 3090,
ers, multicomputers. BBN T C2000.
Fifth ULSI/VHSIC processors, Massively parallel process- Fujitsu VPP500,
{1991 memory, and switches, ing, grand challenge applica- | Cray/MPP,
present) high-density packaging, tions, heterogeneous TMC/CM-5,
scalable architectures. processing. Intel Paragon.
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Elements of Modern Computers

Computing Problems It has been long recognized that the concept of computer
architecture is no longer restricted to the structure of the bare machine hardware. A
modern computer is an integrated system consisting of machine hardware, an instruction
set, system software, application programs, and user interfaces. These system elements
are depicted in Fig. 1.1. The use of a computer is driven by real-life problems demanding

fast and accurate solutions. Depending on the nature of the problems, the solutions may
require different computing resources.

For numerical problems in science and technology, the solutions demand complex
mathematical formulations and tedious integer or floating-point computations. For
alphanumerical problems in business and government, the solutions demand accurate
transactions, large database management, and information retrieval operations.

For artificial intelligence (AI) problems, the solutions demand logic inferences and
symbolic manipulations. These computing problems have been labeled numerical com-
puting, transaction processing, and logical reasoning. Some complex problems may de-
mand a combination of these processing modes.

Pearformance
Evaluaticon
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Hardware Resources The system architecture of a computer is represented by three
nested circles on the right in Fig. 1.1. A modern computer system demonstrates its
power through coordinated efforts by hardware resources, an operating system, and ap-
plication software. Processors, memory, and peripheral devices form the hardware core
of a computer system. We will study instruction-set processors, memory organization,
multiprocessors, supercomputers, multicomputers, and massively parallel computers.

Special hardware interfaces are often built into I/O devices, such as terminals,
workstations, optical page scanners, magnetic ink character recognizers, modems, file
servers, voice data entry, printers, and plotters. These peripherals are connected to
mainframe computers directly or through local or wide-area networks.

Operating System  An effective operating system manages the allocation and deal-
location of resources during the execution of user programs. We will study UNIX
extensions for multiprocessors and multicomputers in Chapter 12. Mach/OS kernel
and OSF/1 will be specially studied for multithreaded kernel functions, virtual mem-
ory management, file subsystems, and network communication services. Beyond the
OS, application software must be developed to benefit the users. Standard benchmark?
programs are needed for performance evaluation.

Mapping is a bidirectional process matching algorithmic structure with hardware
architecture, and vice versa. Efficient mapping will benefit the programmer and produce
better source codes. The mapping of algorithmic and data structures onto the machine
architecture includes processor scheduling, memory maps, interprocessor communica-
tions, etc. These activities are usually architecture-dependent.

- e [

System Software Support Software support is needed for the development of effi-
cient programs in high-level languages. The source code written in a HLL must be first
translated into object code by an optimizing compiler. The compiler assigns variables to
registers or to memory words and reserves functional units for operators. An assembler
is used to translate the compiled object code into machine code which can be recognized

by the machine hardware. A leader is used to initiate the program execution through
the OS kernel.

Compiler Support There are three compiler upgrade approaches: preprocessor,
precompiler, and parallelizing compiler. A preprocessor uses a sequential compiler and
a low-level library of the target computer to implement high-level parallel constructs.
The precompiler approach requires some program flow analysis, dependence checking,
and limited optimizations toward parallelism detection. The third approach demands
a fully developed parallelizing or vectorizing compiler which can automatically detect
parallelism in source code and transform sequential codes into parallel constructs. These
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Evolution of Computer Architecture

The study of computer architecture involves both hardware organization and pro-
gramming/software requirements. As seen by an assembly language programmer, com-
puter architecture is abstracted by its instruction set, which includes opcode (operation
codes), addressing modes, registers, virtual memory, etc.

From the hardware implementation point of view, the abstract machine is orga-
nized with CPUs, caches, buses, microcode, pipelines, physical memory, etc. Therefore,
the study of architecture covers both instruction-set architectures and machine imple-
mentation organizations.

Legends:
I/E: Instruction Fetch and Execute.

SIMD: Single Instruction stream and

Multiple Data streams.
Saq”"' tial Looksheed MIMD: Multiple Instruction streams

and Multiple Data streams.

VE Overlap Paralieis

(o ) ((or
ey
- swo ) (Lo )
Frocestor ) (Cray ) (ucompute) Gutiprocessa)

Massively parallel
processors (MPP)

Department of Computer Science & Engineering, SIT Tumakuru-03 ~ Page4



Advanced Computer Architecture — VIII Semester CSE ~ Prof.Prasanna Kumar K R, Faculty, SIT CSE

Lookahead, Parallelism, and Pipelining Lookahead techniques were introduced
to prefetch instructions in order to overlap I/E (instruction fetch/decode and execution)
operations and to enable functional parallelism. Functional parallelism was supported
by two approaches: One is to use multiple functional units simultaneously, and the other
is to practice pipelining at various processing levels,

Flynn's Classification Michael Flynn (1972) introduced a classification of various
computer architectures based on notions of instruction and data streams. As illus-
trated in Fig. 1.3a, conventional sequential machines are called SISD (single instruction
stream over a single data stream) computers. Vector computers are equipped with scalar
and vector hardware or appear as SIMD (single instruction streamn over multiple data
strearns) machines (Fig. 1.3b). Parallel computers are reserved for MIMD (multiple
instruction streams over multiple data streams) machines.

An MISD (multiple instruction streams and a single data stream) machines are
modeled in Fig. 1.3d. The same data stream flows through a linear array of processors
executing different instruction streams. This architecture is also known as systolic
arrays (Kung and Leiserson, 1978) for pipelined execution of specific algorithms.

Of the four machine models, most parallel computers built in the past assumed the
MIMD model for general-purpose computations. The SIMD and MISD models are more
suitable for special-purpose computations. For this reason, MIMD is the most popular
model, SIMD next, and MISD the least popular model being applied in commercial
machines.

Parallel/Vector Computers Intrinsic parallel computers-are those that execute
programs in MIMD mode. There are two major classes of parallel computers, namely,
shared-memory multiprocessors and message-passing multicomputers. The major dis-
tinction between multiprocessors and multicomputers lies in memory sharing and the
mechanisms used for interprocessor communication.

The processors in a multiprocessor system communicate with each other through
shared variables in a common memory. Each computer node in a multicomputer system
has a local memory, unshared with other nodes. Interprocessor communication is done
through message passing among the nodes.

Department of Computer Science & Engineering, SIT Tumakuru-03 ~ Page5



Advanced Computer Architecture — VIII Semester CSE

Prof.Prasanna Kumar K R, Faculty, SIT CSE

L

Vo>

cu

(a) SISD uniprocessor architecture

PE1 Ds LM1 Bs Dﬁ
s Lo @ - loaded
Program loaded ™ - from
DS from host Ds DS host
> MU PE; la—n] tMh fg—m

(b) SIMD architecture (with distributed memory)

Captions:
PU = Processing Unit i"0....‘__.....[3"'Clh s 1 PY1 [ ps -
MU = Memory Unit . . Shared| *
IS = Instruction Stream . . mmoql b=
PE = Processing Element CUy | PUp la—n )
LM = Local Memory :
(¢) MIMD architecture (with shared memory)
* Y |
S 1% Jeu, cu, cee Ccu,
N—_— llS IS IS
(program | g DS ' DS .
and data) PU, PU; f— e s —i PU, [—>
l )
Ds
o
(d) MISD architecture (the systolic array)
Clock Rate and CPI The CPU (or simply the processor) of today’s digital computer

is driven by a clock with a constant cycle time (7 in nanoseconds). The inverse of the
cycle time is the clock rate (f = 1/7 in megahertz). The size of a program is determined
by its instruction count (I.), in terms of the number of machine instructions to be
executed in the program. Different machine instructions may require different numbers
of clock cycles to execute. Therefore, the cycles per instruction (CPI) becomes an
important parameter for measuring the time needed tc execute each instruction.

Performance Factors Let /. be the number of instructions in a given program, or
the instruction count. The CPU time (7 in seconds/program) needed to execute the
program is estimated by finding the product of three contributing factors:

T=I.xCPlx7t

(1.1)
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The CPI of an instruction type can be divided into two component terms cor-
responding to the total processor cycles and memory cycles needed to complete the
execution of the instruction. Depending on the instruction type, the complete instruc-
tion cycle may involve one to four memory references (one for instruction fetch, two for
operand fetch, and one for store results). Therefore we can rewrite Eq. 1.1 as follows:

T=I.x(p+mxk)xrt (1.2)

where p is the number of processor cycles needed for the instruction decode and exe-
cution, m is the number of memory references needed, k is the ratio between memory
cycle and processor cycle, [, is the instruction count, and 7 is the processor cycle time.
Equation 1.2 can be further refined once the CPI components (p,m, k) are weighted
over the entire instruction set.

System Attributes The above five performance factors (I, p, m, k, 7) are influenced
by four system attributes: instruction-set architecture, compiler technology, CPU im-
plementation and control, and cache and memory hierarchy, as specified in Table 1.2.

The instruction-set architecture affects the program length (I.) and processor cycle
needed (p). The compiler technology affects the values of I, p, and the memory reference
count (m). The CPU implementation and control determine the total processor time
(p-7) needed. Finally, the memory technology and hierarchy design affect the memory
access latency (k - 7). The above CPU time can be used as a basis in estimating the
execution rate of a processor.

MIPS Rate Let C be the total number of clock cycles needed to execute a given
program. Then the CPU time in Eq. 1.2 can be estimated as T = C x 7 = C/f.
Furthermore, CPI = C/I, and T = I, x CPl x 7 = I. x CPl/f. The processor speed
is often measured in terms of million instructions per second (MIPS). We simply call it
the MIPS rate of a given processor. It should be emphasized that the MIPS rate varies
with respect to a number of factors, including the clock rate (f), the instruction count
(I1.), and the CPI of a given machine, as defined below:

I f fxI.
MIPS rate = = = 1.3
Tx10%® CPIx10% (C x 108 (1.3)
Performance Factors
System Instr. Average Cycles per Instruction, CPI Processor
Attributes Count, Processor Memory Memory- Cycle
I Cycles per References per Access Time,
Instruction, p | Instruction, m | Latency, k& T
Instruction-set
Architecture x x
Compiler
Technology x X x
Processor
Implementation > >
and Control
Cache and
Memory x x
Hierarchy
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Implicit Parallelism An implicit approach uses a conventional language, such as C,
Fortran, Lisp, or Pascal, to write the source program. The sequentially coded source
program is translated into parallel object code by a parallelizing compiler. As illustrated
in Fig. 1.5a, this compiler must be able to detect parallelism and assign target machine
resources. This compiler approach has been applied in programming shared-memory

multiprocessors.

rce code wrillen Source code written
n sequential in concurrent dialects
guages C, Fortran, of C, Fortran, Lisp,
isp, or Pascal or Pascal

(o
compiler erving compiler

Parallel Concurrent
object code object code

Execution by
runtime system

(a) Implicit parallelism (b) Explicit parallelism

Explicit Parallelism The second approach (Fig. 1.5b) requires more effort by the
programmer to develop a source program using parallel dialects of C, Fortran, Lisp, or
Pascal. Parallelism is explicitly specified in the user programs. This will significantly
reduce the burden on the compiler to detect parallelism. Instead, the compiler needs
to preserve parallelism and, where possible, assigns target machine resources. Charles
Seitz of California Institute of Technology and William Dally of Massachusetts Institute
of Technology adopted this explicit approach in multicomputer development.
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Multiprocessors and Multicomputers

Two categories of parallel computers are architecturally modeled below. These
physical models are distinguished by having a shared common memory or unshared
distributed memories. Only architectural organization models are described in Sections

Shared-Memory Multiprocessors

The UMA Model Ina UMA multiprocessor model (Fig. 1.6), the physical memory
is uniformly shared by all the processors. All processors have equal access time to all
memory words, which is why it is called uniform memory access. Each processor may
use a private cache. Peripherals are also shared in some fashion.

Multiprocessors are called tightly coupled systems due to the high degree of resource
sharing. The system interconnect takes the form of a common bus_a crossbar switch,

UD ‘ m1 LA & 1 J SHm

The NUMA Model A NUMA multiprocessor is a shared-memory system in which
the access time varies with the location of the memory word. Two NUMA machine
models are depicted in Fig. 1.7. The shared memory is physically distributed to all
processors, called local memories. The collection of all local memories forms a global
address space accessible by all processors.

It is faster to access a local memory with a local processor. The access of remote
memory attached to other processors takes longer due to the added delay through
the interconnection network. The BBN TC-2000 Butterfly multiprocessor assumes the
configuration shown in Fig. 1.7a.
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The COMA Model A multiprocessor using cache-only memory assumes the COMA
model. Examples of COMA machines include the Swedish Institute of Computer Sci-
ence’s Data Diffusion Machine (DDM, Hagersten et al., 1990) and Kendall Square Re-
search’'s KSR-1 machine (Burkhardt et al., 1992). The COMA model is depicted in

The COMA model is a special case of a NUMA machine, in which the distributed
main memories are converted to caches. There is no memory hierarchy at each processor
node. All the caches form a global address space. Remote cache access is assisted by
the distributed cache directories (D in Fig. 1.8). Depending on the interconnection
network used, sometimbs hierarchical directories may be used to help locate copies of
cache blocks. Initial data placement is not critical because data will eventually migrate
to where it will be used.

Interconnection Network
D D D
C | C_] ce e | C |
P | P [ P |

The COMA model of a multiprocessor. (P: Processor, C: Cache, D: Direc-
tory; e.g., the KSR-1)
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Distributed-Memory Multicomputers

A distributed-memory multicomputer system is modeled in Fig. 1.9. The system
consists of multiple computers, often called nodes, interconnected by a message-passing
network. Each node is an autonomous computer consisting of a processor, local memory,
and sometimes attached disks or I/O peripherals.

The message-passing network provides point-to-point static connections among the
nodes. All local memories are private and are accessible only by local processors.
For this reason, traditional multicomputers have been called no-remote-memory-access
(NORMA) machines. However, this restriction will gradually be removed in future mul-

ticomputers with distributed shared memories. Internode communication is carried out
by passing messages through the static connection network.

)

LR N

Vector Processor Models Figure 1.11 shows a register-to-register architecture.
Vector registers are used to hold the vector operands, intermediate and final vector
results. The vector functional pipelines retrieve operands from and put results into the
vector registers. All vector registers are programmable in user instructions. Each vector
register is equipped with a component counter which keeps track of the component
registers used in successive pipeline cycles.
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The length of each vector register is usually fixed, say, sixty-four 64-bit component
registers in a vector register in a Cray Series supercomputer. Other machines, like the
Fujitsu VP2000 Series, use reconfigurable vector registers to dynamically match the
register length with that of the vector operands.
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: Unit'_.m.—: 5 . =1 Contral Unit :
: : v Control
.................... *
Instructions —--I Vector Func. Pipe !—l
Scalar] Main Memory Vector -~ -
Program and Data a Vector - H
ﬂ—r )I-q—— Registers| -

Vo (User)

SIMD Machine Model An operational model of an SIMD computer is specified by
a 5-tuple:

M = (N,C,I,M,R) (1.5)

where

(1) N is the number of processing elements (PEs) in the machine. For example, the
[lliac IV has 64 PEs and the Connection Machine CM-2 uses 65,536 PEs.

(2) C is the set of instructions directly executed by the control unit (CU), including
scalar and program flow control instructions.

(3) I is the set of instructions broadcast by the CU to all PEs for parallel execution.
These include arithmetic, logic, data routing, masking, and other local operations
executed by each active PE over data within that PE.

(4) M is the set of masking schemes, where each mask partitions the set of PEs into
enabled and disabled subsets.

(5) Ris the set of data-routing functions, specifying various patterns to be set up in
the interconnection network for inter-PE communications.
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UNIT 11

Program and Network Properties

The exploitation of parallelism has created a new dimension in computer science. In
order to move parallel processing into the mainstream of computing, H.T. Kung (1991)
has identified the need to make significant progress in three key areas: computation
models for parallel computing, interprocessor communication in parallel architectures,

and system tntegration for incorporating parallel systems into general computing envi-
ronments.

(1) Flow dependence: A statement S2 is flow-dependent on statement S1 if an execution path exists from
S1 to 52 and if at least one output (vanables assigned) of S1 feeds m as mput (operands to be used) to
S2. Flow dependence 1s denoted as S1 — 82,

(2) Antidependence: Statement 52 1s antidependent on statement 81 if 82 follows 81 m program order and
if the output of S2 overlaps the mput to S1. A direct arrow crossed with a bar as in 81 +> 82 dicates
antidependence from S1 to 82,

(3) Output dependence: Two statements are output-dependent if they produce (wnte) the same output
variable, S1 e> 82 indicates output dependence from §1 to 82,

(4) IYO dependence: Read and write are 1/O statements. [/O dependence occurs not because the same
variable 1s involved but because the same file is referenced by both [/0 statements.

(5) Unknown dependence. The dependence relation between two statements cannot be determined m the
following situations:

* The subscript of a variable is itself subscribed.
* The subscript does not contain the loop index variable.

* A variable appears more than once with subscripts having different coefficients of the loop
variable.

* The subscript is nonlinear in the loop index variable.

Control Dependence This refers to the situation where the order of execution of statements cannot be
determined before run time, For example, conditional statements will not be resolved until run time. Different
paths taken after a conditional branch may introduce or eliminate data dependence among instructions,
Dependence may also exist between operations performed in successive iterations of a looping procedure,
[n the following, we show one loop example with and another without control-dependent iterations. The
successive iterations of the following loop are control-independent;
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Bernstein’s Conditions In 1966, Bernstein revealed a set of conditions based on which two processes can
execute in parallel. A process is a software entity corresponding to the abstraction of a program fragment
defined at various processing levels, We define the input set [, of a process P; as the set of all input variables
needed to execute the process.

Similarly, the ougpur set O, consists of all output variables generated after execution of the process P,.
Input variables are essentially operands which can be fetched from memory or registers, and output variables
are the results to be stored in working registers or memory locations.

Now, consider two processes P; and P, with theirinput sets /| and /, and output sets O and O», respectively.
These two processes can execute in parallel and are denoted P, || Ps if they are independent and therefore
create deterministic results.

Formally, these conditions are stated as follows:
Ln0,=¢)
LNO=¢} (2.1)
0,N0,=¢)

Grain $iz¢ of granularity is a measure of the amount of computation involved in a software process. The
simplest measure is to count the number of instructions in a grain (program segment). Grain size determines
the basic program segment chosen for parallel processing, Grain sizes are commonly described as fine,
medium, or coarse, depending on the processmg levels nvolved,

Latency is a time measure of the communication overhead incurred between machine subsystems. For
example, the memory latency is the time required by a processor to access the memory. The time required for
two processes to synchronize with cach other is called the synchronization latency, Computational granularity
and communication latency are closely related, as we shall see below.

Parallelism has been exploited at various processing levels. As illustrated in Fig. 2.5, five levels of
program execution represent different computational grain sizes and changing communication and control
requirements, The lower the level, the finer the granularity of the software processes.

[n general, the execution of a program may involve a combination of these levels. The actual combination
depends on the application, formulation, algonthm, language, program, compilation support, and hardware
characteristics. We characterize below the parallelism levels and review their implementation issues from the
viewpoints of a programmer and of a compiler writer.
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Instruction Level At the lowest level, a typical grain contains less than 20 instructions, called fine grain
in Fig. 2.5. Depending on individual programs, fine-grain parallelism at this level may range from two to
thousands. Butler et al. (1991) has shown that single-instruction-stream parallelism is greater than two, Wall
(1991) finds that the average parallelism at instruction level is around five, rarely exceeding seven, in an
ordinary program. For scientific applications, Kumar (1988) has measured the average parallelism in the
range of 500 to 3000 Fortran statements executing concurrently in an idealized environment,

Loop Level This corresponds to the iterative loop operations. A typical loop contains less than 500
Instructions. Some loop operations, if independent in successive iterations, can be vectorized for pipelined
execution or for lock-step execution on SIMD machines, Some loop operations can be self-scheduled for
parallel execution on MIMD machunes

Procedure Level This level corresponds to medium-grain parallelism at the task, procedural, subroutine,
and corouting levels. A typical grain at this level contains less than 2000 instructions, Detection of parallelism
at this level is much more difficult than at the finer-grain levels. Interprocedural dependence analysis is much
more nvolved and history-sensitive,

Communication requirement is often less compared with that required in MIMD execution mode. SPMD
execution mode is a special case at this level. Multitasking also belongs in this category, Significant efforts
by programmers may be needed to restructure a program at this level, and some compiler assistance is also
needed.
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Subprogram Level This corresponds to the level of job steps and related subprograms. The grain size may
typically contain tens or hundreds of thousands of instructions. Job steps can overlap across different jobs.
Subprograms can be scheduled for different processors in SPMD or MPMD mode, ofien on message-passing
multicomputers,

Job (Program) Level This corresponds to the parallel execution of essentially independent jobs (programs)
on a parallel computer. The grain size can be as high as millions of instructions in a single program. For
supercomputers with a small number of very powerful processors, such coarse-grain parallelism is practical,
Job-level parallelism is handled by the progtam loader and by the operating system in general. Time-sharing
or space-sharing multiprocessors explore this level of parallelism. In fact, both time and space sharing are
extensions of multiprogrammmg,

222 Grain Packing and Scheduling

Two fundamental questions to ask in parallel programming are; (i) How can we partition a program into
parallel branches, program modules, microtasks, or grains to yield the shortest possible execution time? and
(it) What is the optimal size of concurrent grains in a computation?

This grain-size problem demands determination of both the number and the size of grains (or microtasks)
in a parallel program. Of course, the solution is both problem-dependent and machine-dependent. The goal is
to produce a short schedule for fast execution of subdivided program modules.

There exists a tradeoff between parallelism and scheduling/ synchronization overhead. The time complexity
imvolves both computation and communication overheads. The program partitioning involves the algonthm
designer, programmer, compiler, operating system support, etc. We describe below a grain packing approach
introduced by Kruatrachue and Lews (1988) for parallel programming applications.

The basic concept of program partitioning is introduced below. In Fig. 2.6, we show an example program
graph in two different grain sizes. A program graph shows the structure of a program. It is very similar
to the dependence graph introduced in Section 2.1.1. Each node in the program graph corresponds to a
computational unit in the program, The grain size is measured by the number of basic machine cycles
(including both processor and memory cycles) needed to execute all the operations within the node.

We denote each node in Fig. 2.6 by a pair (n, 5), where n 15 the nade name (1d) and s is the grain size of the
node. Thus grain size reflects the number of computations involved in a program segment. Fine-grain nodes
have a smaller grain size, and coarse-grain nodes have a larger grain size.
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Vara b,c.d.e . fg. hi,j.k.l.mno,p, q
Begin

l. a=1 10, j =ex{f
2. b=2 1. &k =dxf
3. c=3 12. | =jxk
4, d=4 13. m:=4x1
5. e=35 4. n =31xXm
6. f =6 15. 0o =nxi
1. g=aXb 16. pr=oxh
8. h=cxd 17. q =pXg
9. i =dxe

End

¥l
(ns8)= [ﬁoda. grain size)
{x,0) = (input, delay)
g,0 (k) = {output, delay) i

(b) Coarse-grain program graph
(a) Fine-grain program graph before packing after packing

PROGRAM FLOW MECHANISMS

Conventional computers are based on a control flow mechanism by which the order of program execution
is explicitly stated in the user programs. Dataflow computers are based on a datadriven mechanism which
allows the execution of any instruction to be driven by data (operand) availability. Dataflow computers
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emphasize a high degree of parallelism at the fine-grain instructional level. Reduction computers are
based on a demand-driven mechanism which initiates an operation based on the demand for its results by
other computations.

Control Flow Versus Data Flow

Conventional von Neumann computers use a program counter (PC) to sequence the execution of
instructions in a program. The PC is sequenced by instruction flow in a program. This sequential
execution style has been called control-driven, as program flow is explicitly controlled by programmers.

A uniprocessor computer is inherently sequential, due to use of the control driven mechanism. However,
control flow can be made parallel by using parallel language constructs or parallel compilers. In this book,
we study primarily parallel control-flow computers and their programming techniques. Until the data-
driven or demand-driven mechanism is proven to be cost-effective, the control-flow approach will
continue to dominate the computer industry.

In a dataflow computer, the execution of an instruction is driven by data availability instead of being
guided by a program counter. In theory, any instruction should be ready for execution whenever operands
become available. The instructions in a data-driven program arc not ordered in any way. Instead of being
stored separately in a main memory, data are directly held inside instructions.

Computational results (data tokens) are passed directly between instructions. The data generated by an
instruction will be duplicated into many copies and forwarded directly to all needy instructions. Data
tokens, once consumed by an instruction, will no longer be available for reuse by other instructions. This
data-driven scheme requires no program counter, and no control sequencer. However, it requires

special mechanisms to detect data availability, to match data tokens with needy instructions, and to enable
the chain reaction of asynchronous instruction executions. No memory sharing between instructions
results in no side effects.

The global architecture consists ofn processing elements (PEs) interconnected by an n x n muting
network. The entire system supports pipclincd dataflow operations in all n PEs. Inter-PE communications
arc done through the pipelincd routing network.

From routing network

Program
Mearmaoiry
Global path *
Compute
Tag

n = i Routing Network I

| = Struciire (=

_,_;l—_l i

[PE._,J LPEz | PE_
T I F = -1 Y Processing Elemeant
_____ 2ifoniats oo sanie sl ShepEsy el a0 e S0t (]
" To Routing Natwaork
(a) The global architecture (b) Interor design of a processing element
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Within each PE, the machine provides a low-level token matching mechanism which dispatches onlythose
instructions whose input data [tokens] are already available. Each datum is tagged with the address of thc
instruction to which it belongs and the context in which thc instntction is being executed. Instructions are
stored in the program memory. Tagged tokens enter the PE through a local path. The tokens can also be
passed to other PEs through the routing network. All internal token circulation operations are pipclincd
without blocking. It is the machine’s job to match up data with the same tag to needy instructions. In so
doing, new data will be produced with a new tag indicating the successor instructiontsl. Thus, each
instruction represents a synchronization operation. New tokens are formed and circulated along the PE
pipeline for reuse or to other PEs through the global path, which is also pipelined.

NETWORK PROPERTIES & ROUTING

The topology of an interconnection network can be either static or dynamic. Static networks are formedof
point-to-point direct connections which will not change during program execution. Dynamic networks are
implemented with switched channels, which are dynamically configured to match the
communicationdemand in user programs. Packet switching and routing is playing an important role in
modern multiprocessor architecture.

Node Degree and Network Diameter : The number of edges {links or channels) incident on a node is
called the node degree d. In the case of unidirectional channels, thc number of channcls into a node is the
in degree, and that out of a node is thc out degree. Then thc node degree is thc sum ofthe two. Thc node
degree reflects the number of IO ports required per node, and thus the cost of a node. Therefore, the node
degree should be kept a (small) constant, in order to reduce oost.

The Diameter D of a network is the maximum shortest path between any two nodes. The path length is
measured by the number of links traversed. The network diameter indicates the maximum number of
distinct hops between any two nodes, thus providing a figure of communication merit for the network.
Therefore, the network diameter should be as small as possible from a communication point of vicw.

Bisection Width: When a given network is cut into two equal halves, the minimum number of edges
{channels} along thc cut is called thc bisection width b. In the case of a communication network, each
edge may correspond to a channel with w bit wires.

To summarize the above discussions, the performance of an interconnection network is affected by the
following factors:

Functionality: refers to how the network supports data routing, interrupt handling, synchronization,
request-"message combining, and coherence.

Network Latency:-—This refers to the worst-ease time delay for a unit message to be transferred through
the network.

Bandwidth This refers to the maximum data transfer rate, in terms of Mbps or Gbps transmitted through
the network
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Hardware Complexity'—This refers to implementation costs such as those for wires, switches,
connectors, arbitration, and interface logic.

Scalability—This refers to the ability ofa network to be modularly expandable with a scalable
performance with increasing machine resources.

Perfect Shuffle and Exchange Perfect shuffle is a special permutation function suggested by Harold
Stone (1971) for parallel processing applications, The mapping corresponding to a perfect shuffie is shown
in Fig. 2, 14a. Its inverse is shown on the nght-hand side (Fig. 2.14b).

000 — 000 000—000 =0
001 001 001 001 =1
010 010 010 010 =2
G11 011 011 011 =3
100 100 100 100 =4
101 101 101 101 =5
11.0 110 110 110 =6
(1 % S s 2 11— 111 =7

(a) Perect shuffle (b) Inverse perfect shuffie

STATIC CONNECTION NETWORKS:

Static networks use direct links which are fixed once built. This type of network is more suitable for building

computers where the communication patterns are predictable or implementable with static connections. We
descnibe therr topologies below in terms of network parameters and comment on their relative merits in
relation to communication and scalability.
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; a8

(c) Chordal ring of degree 3 (d) Chordal ring of degrea 4
(same as |liac mesh)

Dynamic Connection Networks

Switch Modules  Ana x b switch module has a inputs and b outputs. A hinary switch corresponds toa 2 x

2 switch module in which a= b=2. In theory, a and b do not have to be equal. However, in practice, o and b
are often chosen as infeger powers of 2; that is,a= b= 2 forsome k2 1.

Multistage Interconnection Networks MINs have been used in both MIMD and SIMD computers. A
generalized multistage network is illustrated in Fig. 2.23. A number of a x b swifches are used in each
stage. Fixed interstage connections are used between the switches in adjacent stages. The switches can be
dynamically set to establish the desired connections between the inputs and outputs,

Different classes of MINs differ in the switch modules used and in the kind of inferstage connection (1SC)
pattems used. The simplest switch module would be the 2 x 2 switches (a = b = 2 in Fig. 2.23). The ISC
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UNIT III

PIPELINING
Linear PipelineProcessors

A linear pipeline processor is a cascade of processing stages which are linearlyconnected to perform a
fixed function over a stream of data flowing from one end tothe other. In modern computers, linear

pipelines are applied for instruction execution,arithmetic computation, and memory-access operations
Asynchronous & Synchronous models

A linear pipeline processor is constructed with k processing stages.External inputs(operands) are fed into
the pipeline at the first stage S1.The processed results are passed from stage Si ito stage Si+i,The final
result emerges from thepipeline at the last stage Sn.Depending on the control of data flow along the

pipeline, we model linear pipelinesin two categories: asynchronous and Synchronous.
Asynchronous Model

As shown in the figure data flow between adjacent stages in an asynchronous pipeline is controlled by a
handshaking protocol. When stage Si is ready to transmit, it sends a ready signal to stage Si+1. After stage
receives the incoming data, it returns an acknowledge signal to Si. Asynchronous pipelines are useful in
designing communication channels in message- passing multicomputers where pipelined wormhole
routing is practiced Asynchronous pipelines may have a variable throughput rate.Different amounts of

delay may be experienced in different stages.

Synchronous Model :Synchronous pipelines are illustrated in Fig. Clocked latches are used to interface

Input |:]’>F :|_: i Sm—Er ‘>— ':i) Output
_REHFJ WJBL‘]Y

Ready ——» 51 S P S | Ready

Ack g | T —— -

Ak Ack Ack

between stages. The latches are made with master-slaveflip-flops, which can isolate inputs from outputs.
Upon the arrival of a clock pulse All latches transfer data to the next stage simultaneously.The pipeline
stages are combinational logic circuits. It is desired to have approxilmately equal delays in all
stages.These delays determine the clock period and thus thespeed of the pipeline. Unless otherwise
specified, only synchronous pipelines are studied.The utilization pattern of successive stages in a

synchronous pipeline is specified by a reservation table.
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For a linear pipeline, the utilization follows the diagonal streamline pattern shown in Fig. .This table is
essentially a space-time diagram depicting theprecedence relationship in using the pipeline stages.
Successive tasks or operations are initiated one per cycle to enter the pipeline.Oncethe pipeline is filled

up, one result emerges from the pipeline for each additional cycle.This throughput is sustained only if the

successive tasks are independent of each other. 1 2 g 4
S4| X
Stages
Sa X
S4 x

Clocking and Timing Control.

The clock cycle of a pipeline is determined below. Let T* be the time delay of thecircuitry in stage Si and

d the time delay of a latch, as shown in Fig.

Clock Cycle and Throughput :Denote the maximum stage delay as Tm ,and we canwrite T as T =

max{Ti} +d =Tm+d

At the rising edge of the clock pulse, the data is latched to the master flip-flops of each latch register.The
clock pulse has a width equal to d. In general, T m »d for one to two orders of magnitude. This implies
that the maximum stage delay Tm dominates theclock period.The pipeline frequency is defined as the

inverse of the clock period
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If one result is expected to come out of the pipeline per cycle, f represents the maximum throughput of
the pipeline. Depending on the initiation rate of successive tasks enteringthe pipeline, the actual
throughput of the pipeline may be lower than f.This is becausemore than one clock cycle has elapsed

between successive task initiations

Clock Skewing : Ideally, we expect the clock pulses to arrive at all stages (latches)at the same
time.However, due to a problem known as clock skewing the same clock pulse may arrive at different

stages with a time offset of s.

Let tmax be the time delayof the longest logic path within a stage and tm in that of the shortest logic path

within a stage.

To avoid a race in two successive stages, we must choose Tm > tmax + s and d < tmn — s. These
constraints translate into the following bounds on the clock periodwhen clock skew takes effect: d + tmax

+s <= T<= Tm+tmin-s Tn the ideal case s = 0, tmax = Tm, and tmin = d. Thus, we have T=Tm+ d
Speedup, Throughput & Efficiency of Pipeline: Speedup is defined as

Speedup = Time taken for a given computation by a non-pipelined functional unit

Time taken for the same computation by a pipelined version

Assume a function of k stages of equal complexity which takes the same amount of time T. Non-
pipelined function will take kT time for one input. Then Speedup = nkT/(k+n-1)T = nk/ (k+n-1)
Efficiency:It is an indicator of how efficiently the resources of the pipeline are used. If a stage is
available during a clock period, then its availability becomes the unit of resource. Efficiency can be

defined as

Number of stage time units actuall used during computation

Efficiency =
y Total number of stage time units available during that computation

No. of used stage time units = nk there are n inputs and each input uses k stages.
Total no. of stage-time units available =k[ k + (n-1)]

It is the product of no. of stages in the pipeline (k) and no. of clock periods taken for computation(k+(n-
1)).

No. of used stage time units = nk there are n inputs and each input uses k stages. Total no. of stage-time
units available = k[ k + (n-1)] It is the product of no. of stages in the pipeline (k) and no.

of clock periods taken for computation(k+(n-1)).
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. nk n
Eff = =
feeney klk+n-1] k+n—1
Throughput:It is the average number of results computed per unit time. For n inputs, a k-staged pipeline
takes [k+(n-1)]T time units Then, Throughput =n/[k+n-1] T =nf/ [k+n-1] where f is the

clock frequency
NON LINEAR PIPELINE PROCESSORS:

A dynamic pipeline can be reconfigured to perform variable functions at different times.The traditional
linear pipelines are static pipelines because they are used toperform fixed functions.A dynamic pipeline

allows feedforward and feedback connections in addition to the streamline connections.

Reservation and Latency analysis:In a static pipeline, it is easy to partition a given function into a
sequence of linearly ordered subfunctions. However, function partitioning in a dynamic pipeline becomes
quite involved because the pipeline stages are interconnected with loops inaddition to streamline
connections.A multifunction dynamic pipeline is shown in Fig. This pipeline has three stages. Besides the
streamline connections from S1 to S2 and from S2 to S3, there is a feedforward connection from S1 to S3
and two feedback connections from S3 to S2 and from S3 to S1.These feedforward and feedback
connections make the scheduling of successive events into the pipeline a nontrivial task.With these
connections, the output of the pipeline is not necessarily from the last stage.In fact, following different

dataflow patterns, one can use the same pipeline to evaluate different functions

Output X
» i

Input ———— || > J Output Y

il s ]

LA
N4

T

Reservation Tables : The reservation table for a static linear pipeline is trivial in the sense that data flow
follows a linear streamline. The reservation table for a dynamicpipeline becomes more interesting
because a nonlinear pattern is followed.Given a pipeline configuration, multiple reservation tables can be
generated for the evaluation of different functions.Two reservation tables are given in Fig, corresponding

to a function X and a function Y, respectively.
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(b) Resenation table for function X (c) Resarvation table for function Y

Each function evaluation is specified by one reservation table.A static pipeline is specified by a single
reservation table .A dynamic pipelinemay be specified by more than one reservation table.Each
reservation table displays the time-space flow of data through the pipeline forone function

evaluation.Different functions may follow different paths on the reservation table.

A number of pipeline configurations may be represented by the same reservation table.There is a many-to-
many mapping between various pipeline configurations and different reservation tables.The number of

columns in a reservation table is called the evaluation time of a given function.

Latency Analysis The number of time units (clock cycles) between two initiations of a pipeline is the
latency betweenthem.Latency values must be non negative integers.A latency of k means that two
initiations are separated by k clock cycles. Any attempt by two or more initiations to use the same pipeline
stage at the same time will cause a collision. A collision implies resource conflicts between two initiations
in the pipeline. Therefore, all collisions must be avoided in scheduling a sequence of pipeline
initiations.Some latencies will cause collisions, and some will not. Latencies that cause collisions are

called forbidden latencies

COLLISION FREE SCHEDULING:When scheduling events in a nonlinear pipeline, the main
objective is to obtain the shortest average latency between initiations witliout causing collisions. In what
follows, we present a systematic method for achieving such collision-free scheduling.

Collision Vector: By examining the reservation table, one can distinguish the set of permissible latencies

from the set of forbidden latencies. For a reservation table with n columns, the maximum forbidden
latency in m<=n-1. The permisable latency p should be as small as possible. The choice is made in the
range 1 <= p <= m-1. A permissible latency of p = I corresponds to the ideal case. In theory, a latency of 1
can always be achieved in a static pipeline which follows a linear (diagonal or streamlined) reservation
table.
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The combined set of permissible and forbidden latencies can be easily displayed by a collision vector,
which is an m-bit binary vector C = (C,Cr. | ...C5C)). The value of C;= | if latency 7 causes a collision
and C; = 01f latency 1 is permissible. Note that it is always true that C,, = 1, corresponding to the maximum
forbidden latency,

For the two reservation tables in Fig. 6.3, the collision vector Cy = (1011010} is obtained for function X,
and Cy=(1010) for function Y. From Cy, we can immediately tell that latencies 7, 5, 4, and 2 are forbidden
and latencies 6, 3, and | are permissible. Similarly, 4 and 2 are forbidden latencies and 3 and 1 are permissible
latencies for function Y.

State Diagrams From the above collision vector, one can construct a state diagram specifying the
permissible state transitions among successive initiations. The collision vector, like Cy above, corresponds to
the initial state of the pipeline at time | and thus is called an initial collision vector, Let p be a permissible
latency within the range [<p < m - 1.

The next state of the pipeline at time £+ p is obtained with the assistance of an m-bit right shift register as
in Fig. 6.6a. The initial collision vector C is initially loaded into the register. The register is then shifted to the
right. Each 1-bit shift corresponds to an increase in the latency by 1. When a 0 bit emerges from the right end
after p shifts, it means p is a permissible latency, Likewise, a 1 bit being shifted out means a collision, and
thus the corresponding latency should be forbidden.

Logical 0 enters from the left end of the shift register. The next state after p shifts is thus obtained by
bitwise-ORing the initial collision vector with the shifted register contents. For example, from the initial
state Cy = (1011010), the next state (1111111) is reached after one right shift of the register, and the next state
(1011011} is reached after three shifts or six shifts.
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(a) State transition using an r-bit right shift register, where ris the maximum forbidden latency

1011010

1011011 | |1111111|
6
(b) State diagram for function X (c) State diagram for function Y

Bounds on the MAL n 1972, Shar determined the following bounds on the minimal average latency

(MAL) achievable by any control strategy on a statically reconfigured pipeline executing a given reservation
table:

(1) The MAL is lower-bounded by the maximum number of checkmarks in any row of the reservation
table.
(2) The MAL is lower than or equal to the average latency of any greedy cycle in the state diagram,

(3) The average latency of any greedy cycle 1s upper-bounded by the number of 1's in the mitial collision
vector plus 1, This is also an upper bound on the MAL,
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UNIT IV INSTRUCTION PIPELINE DESIGN

6.3.1 Instruction Execution Phases

A typical instruction execution consists of a sequence of operations, including instruction fetch, decode,
operand fetch, execute, and write-back phases. These phases are ideal for overlapped execution on a linear
pipeline.

Pipelined Instruction Processing A typical mstruction pipeline is depicted in Fig. 6.9. The ferch stage (F)
fetches instructions from a cache memory, ideally one per cycle. The decode stage (D) reveals the instruction
function to be performed and identifies the resources needed. Resources include general-purpose registers,
buses, and functional units. The issue stage (I) reserves resources, The operands are also read from registers
during the issue stage,

The instructions are executed in one or several execute stages (E), Three execute stages are shown in
Fig. 6.9a. The last writehack stage (W) is used to write results into the registers. Memory load or store
operations are treated as part of execution. Figure 6.9 shows the flow of machine instructions through a
typical pipeline, These eight instructions are for pipelined execution of the high-level language statements
X=Y+Zand A=B x C. Here we have assumed that load and store mstructions take four execution clock
cycles, while floating-point ackd and multip/y operations take three cycles.

Write-
Fetch Decode lssue Execule Execute Exacutel | Back |—»
F D | E E E W
(a) A seven-stage instruction pipeline
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6.3.2 Mechanisms for Instruction Pipelining

We introduce instruction buffers and describe the use of cacheing, collision avoidance, multiple functional
units, register tagging, and internal forwarding to smooth pipeline flow and to remove bottlenecks and

unnecessary IMemory access operations.

Prefetch Buffers Three types of buffers can be used to match the instruction fetch rate to the pipeline
consumption rate. In one memory-access time, a block of consecutive instructions are fetched into a prefetch
buffer as illustrated in Fig. 6.11. The block access can be achieved using interleaved memory modules or

using a cache to shorten the effective memory-access time as demonstrated in the MIPS R4000.

Sequential instructions indicated by program counter
= [ 8eq. Buffer 1 L

T Seq. Buffer 2 ~L
Memaory - Flmh T
L {rarget Bufer 1 ‘j.!nsln.hclbn Pipeline
/ jTarE Buffer 2

Instructions from branched locations

Sequential instructions are loaded into a pair of sequential buffers for in-sequence pipelining. Instructions
from a branch target are loaded into a pair of targer buffers for out-of-sequence pipelining. Both buffers
operate in a first-in-first-out fashion. These buffers become part of the pipeline as additional stages.

A conditional branch instruction causes both sequential buffers and target buffers to fill with instructions,
After the branch condition is checked, appropriate instructions are taken from one of the two buffers, and
instructions in the other buffer are discarded. Within each pair, one can use one buffer to load instructions
from memory and use another buffer to feed instructions into the pipeline. The two buffers in each pair
alternate to prevent a colhision between instructions flowing into and out of the pipeline.

Athird type of prefetch buffer is known as a Joop buffer. This buffer holds sequential instructions contained
ina small loop. The loop buffers are maintained by the fetch stage of the pipeline. Prefetched instructions in
the loop body will be executed repeatedly until all iterations complete execution. The loop buffer operates in
two steps. First, it contains instructions sequentially ahead of the current instruction. This saves the imstruction
fetch time from memory. Second, it recognizes when the target of a branch falls within the loop boundary. In
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Multiple Functional Units Sometimes a certain pipeline stage becomes the bottleneck. This stage
corresponds to the row with the maximum number of checkmarks in the reservation table, This bottleneck
problem can be alleviated by using multiple copies of the same stage simultaneously. This leads to the use of
multiple execution units in a pipelined processor design (Fig. 6.12).

Instruction from Memaory

l

Register
Instruction Fetch Unit . e
1 :
l | B y i B
Jag Decode and Issue Units |———— |
nit ' X
i i
[ - = > 1
¥
R OO e l ¢ ¢ i
asarva n Load
Stations - o i =) T Registers
- T 1 I 7
Functional
P Fu Fu FU |ee=s| FU Memory
L 3 L l i Data
Results Bus

Internal Data Forwarding  The throughput of a pipelined processor can be further improved with internal
data forwarding among multiple functional units. In some cases, some memory-access operations can be
replaced by register transfer operations. The idea is described in Fig. 6.13.

A store-load forwarding is shown in Fig, 6,13 in which the Joad operation (LD R2, M) from memory
to register R2 can be replaced by the move operation (MOVE R2, R1) from register R1 to register R2.
Since register transfer is faster than memory access, this data forwarding will reduce memory traffic and

thus results in a shorter execution time. Similarly, load-load forwarding (Fig. 6.13b) eliminates the second
load operation (LD R2, M) and replaces it with the mow operation (MOVE R2, R1),
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(a) Store-load forwarding (b) Load-lad forwarding

Effect of Branching Three basic terms are introduced below for the analysis of branching effects; The
action of fetching a nonsequential or remote instruction after a branch instruction is called branch taken. The
instruction to be executed after a branch taken is called a branch target. The number of pipeline cycles wasted
between a branch taken and the fetching of its branch target is called the delay slor, denoted by b, In general,
0 < b < k— 1, where £ is the number of pipeline stages.

When a branch is taken, all the instructions following the branch in the pipeline become useless and will
be drained from the pipeline, This implies that a branch taken causes the pipeline to be flushed, losing a
number of useful cycles.

These terms are illustrated in Fig. 6,18, where a branch taken causes I, through I, ; | to be drained from
the pipeline. Let p be the probability of a conditional branch instruction in a typical instruction stream and g
the probability of a successfully executed conditional branch instruction (2 branch taken). Typical values of
p = 20% and g = 60% have been observed in some programs.

The penalty paid by branching is equal to pgnbt because cach branch taken costs b7 extra pipeline cycles.
Based on Eq. 6.4, we thus obtain the total execution time of » instructions, including the effect of branching,
as follows:

Lyg=kt +(n-1) v+ pgnbrt

we define the following effective pipeline throughput with the influence of branching:

i . nf

Ty  k+n—1+ pgnb

(6.12)
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When n — o, the tightest upper bound on the effective pipeline throughput is obtained when b= k - 1:

/

TP o

Hy =

Fixed-Point Operations Fixed-pomt numbers are represented internally in machines in sign-magnitude,
one's complement, or two s complement notation. Most computers use the two's complement notation because
of its unique representation of all numbers (including zero). One's complement notation introduces a second
zero representation called dirty zero.

Add, subtract, multiply, and divide are the four primitive arithmetic operations, For fixed-point numbers,
the add or subtract of two n-bit integers (or fractions) produces an »-bit result with at most one carry-out.

The multiplication of two n-bit numbers produces a 2n-bit result which requires the use of two memory
words or two registers to hold the full-precision result.

The division of an -bit number by another may create an arbitrarily long quotient and a remainder. Only
an approximate result is expected in fixed-point division with rounding or truncation. However, one can
expand the precision by using a 2n-bit dividend and an n-bit divisor to yield an n-bit quotient.

Floating-Point Numbers A floating-point number Y is represented by a pair (m, ¢), where m is the mantissa
(or fraction) and ¢ is the exponent with an implied base (or radix). The algebraic value is represented as X =
m x r°. The sign of X can be embedded in the mantissa.
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ek I - 8 & 31
'R BN
T - v - p - ~ -
Sign Exponent & Mantissa m

A binary base is assumed with r = 2. The 8-bit exponent ¢ field uses an excess-127 code. The dynamic
range of e is (~127, 128), internally represented as (0, 255). The sign s and the 23-bit mantissa field m form
a 25-bit sign-magnitude fraction, including an implicit or “hidden” 1 bit to the left of the binary point. Thus
the complete mantissa actually represents the value 1.m in binary,

This hidden bit s not stored with the number. If 0 < ¢ < 255, then a nonzero normalized number represents
the following algebraic value:

X=(-1'x2"¥"x(1m) (6.15)

When ¢ = 255 and m # 0, a not-a-mimber (NaN) is represented. NaNs can be caused by dividing a zero by
a zero or taking the square root of a negative number, among many other nondeterminate cases, When ¢ = 255
and m = 0, an mfinite number X' = (~1)" o is represented, Note that +eo and —= are represented differently.,

When ¢ =0 and m # 0, the number represented is X = (~1)'2'*(0.m). When e =0 and m = 0, a zero is
represented as X = (—1)"0. Again, +0 and - 0 are possible.

The 64-bit (double-precision) floating point can be defined similarly using an excess-1023 code in the
exponent field and a 52-bit mantissa field. A number which is nonzero, finite, non-NaN, and normalized, has
the following value:

XY= x 2By (1.m) (6.16)

Floating-Point Operations The four primitive arithmetic operations are defined below for a pair of
floating-point numbers represented by X = (m,, ) and ¥ = (m,, ¢). For clarity, we assume ¢, < ¢, and base
r=2,

X+Y =(mx2*“+m)x2” (6.17)
X=Y = (X2 -my) X 27 (6.18)
XxY =(myxm)x2“" (6.19)
X+Y =(m+m)x 2" (6.20)

The above equations clearly identify the number of arithmetic operations involved in each floating-point
function. These operations can be divided into two halves: One half is for exponent operations such as
comparing their relative magnitudes or adding/subtracting them; the other half is for mantissa operations,
including four types of fixed-point operations.
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Arithmetic Pipeline Stages Dcpending on the function to be implemented, different pipeline stages in
an arithmetic unit require different hardware logic. Since all arithmetic operations (such as add subwract,
multiply, divide, squaring, square rooting, logarithm, etc.) can be implemented with the basic add and shifting
operations, the core arithmetic stages require some form of hardware to add and to shift.

For example, a typical three-stage floating-point adder includes a first stage for exponent comparison and
equalization which is implemented with an integer adder and some shifting logic; a second stage for fraction
addition using a high-speed carry lookahead adder; and a third stage for fraction normalization and exponent
readjustment using a shifter and another addition logic.

Arithmetic or logical shifts can be easily implemented with shift registers. High-speed addition requires
either the use of a carry-propagation adder (CPA) which adds two numbers and produces an arithmetic sum
as shown in Fig. 6.22a, or the use of a carry-save adder (CSA) to “add” three input numbers and produce one
sum output and a carry output as exemplified in Fig. 6.22b.

In a CPA, the carries generated in successive digits are allowed to propagate from the low end to the high
end, using either ripple carry propagation or some carry looka-head technique.

A B
ag. n=4 ,i, i,
n n

A= 1011
) B= 0111 -
S=10010=-A+8
C n
ol s
(Sum)

{a) An n-bit camry-propagate adder (CPA) which allows either carry
propagation or applies the camy-lookahead technique

X Y z
ag. n=4
X= 001011 'i{"' it 't“
Y= 010101 >
@2= 11110 1 \ oA /
sb= 0100011 ,irm ,tnﬂ

S E=019101D e gb
§=1011111=8%C=X¢Y4Z (Camy (Bhwise
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Multiply Pipeline Design Consider as an example the multiplication of two 8-bit integers A x B = P,
where Pis the 16-bit product. This fixed-point multiplication can be written as the summation of eight partial
products as shown below: P=Ax B=Fy+ P, + Py + .- + P,, where x and + are arithmetic multiply and add
operations, respectively.

Lo SR — I — R — B — B — B — BT L ]
== e — = == =
L— I — T — I — B — B — B I — ]
=l === == =
(=T — T — O — I — R — N — T =]
(— I — R — R — R — e — B — I I — |
L— N — B — R — A — A — I — I
we

T —
(— S — RN — R — B — |

el — 0 — R —
e T R — TR e R e

— R I — R — R — T — R — B — BT

=
=
=
_—
Ll
——
—_—
=

Note that the partial product P is obtained by multiplying the multiplicand A by the jth bit of B and then
shifting the result / bits to the left for /=0, 1,2, ..., 7. Thus P, is (8 + j) bits long with ; trailing zeros. The
summation of the eight partial products is done with a Hallace tree of CSAs plus a CPA at the final stage, as
shown in Fig, 6.23,

The first stage (5,) generates all eight partial products, ranging from & bits to 15 bits, simultaneously. The
second stage (5;) 1s made up of two levels of four CSAs, and it essentially merges eight numbers into four
numbers ranging from 13 to 15 bits. The third stage (S;) consists of two CSAs, and it merges four numbers
from Sy into two 16-bit numbers, The final stage (S,) is a CPA, which adds up the last two numbers to produce
the final product P
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S1 Multiplier recoding logic
9 i’m 111412413 £14 i"lﬁ
L

L —
Captions: ¢‘15
CSA = Carry save adder
CPA = Carry Propagate adder P=AxB
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Cache Coherence Problem

In a memory hierarchy for a multiprocessor system, data inconsistency may oecur between adjacent levels
or within the same level. For example, the cache and main memory may contain inconsistent copies of
thesame data object. Multiple caches may possess tlitierent copies ofthe same memory block because
multiple processors operate asynchronously and independently.

Caches in a multiprocessing cnvironrncent introduce thc cache coherence problem.When multiple
processors maintain locally cached copies of a unique shared-memory location, any local modification of
the location can result in a globally inconsistent view of memory. Cache coherence schemes prevent this
problem by maintaining a uniform state for each cached block of data. Cache inconsistencies caused by
data sharing, process migration, or I/O are explained below.

Inconsistency in Data sharing: Sharing The cache inconsistency problem occurs only when multiple
private caches are used. In general, three sources of thc problem are identified: sharing of writable data,
process migration and I/O activity.

Consider a multiprocessor with two processors, each using a private cache and both sharing the main
memory. Let X be a shared data element which has been referenced by both processors. Before update,
the three copies of X are consistent.

If processor P. writes new data X’ into the cache, the same copy will be written immediately into the
shared memory under a write through policy.

In this case. inconsistency occurs between the two copies {X and X') in the two caches On the other hand,
inconsistency may also occur when a write back policy is used, as shown on the right The main memory
will be eventually updated when the modified data in the cache are replaced or invalidated

Process Migration and 1/0:

The figure shows the shows the occureence of inconsistency after a process containing a shared variable
X migrates from processor 1 to processor 2 using the write-back cache on the right. In the middle, a
process migrates from processor 2 to processorl when using write-through caches.

o [71] [2] [F] P [F [
[ [ I I

] 1 Gl ]
[F | |

— Bus
Shared
ey [ x

Before update Wirite<through VWrite-back
(a) Inconsistency in sharing of writable data
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Before Migration Wirite-throwgh Write-back
(b)) Inconsistency after process migration

=
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In both cases, inconsistency appears between the two cache copies, labeled Xand X’. Special precautions
must be exercised to avoid such inconsistencies. A coherence protocol must be established before
processes can safely rnigrate from one processor to another.

Protocol Approaches

Many of the early commercially available multiproccssors used bus-based memory systems. A bus is a
convenient device for ensuring cache coherence because it allows all processors in the system to observe
ongoing memory transactions. If a bus transaction threatens the consistent state of a locally cached obj
ect, the cache controller can take appropriate actions to invalidate thc local copy. Protocols using this
mechanism to ensure cohcrcncc arc called snoopy protocols bccausc each cach-c snoops on thc
transactions of other caches.

On the other hand, scalable multiprocessor systems interconnect processors using short point-to-point
links in direct or multistage networks. Unlike the situation in buses, the bandwidth of these networks
increases as more processors are added to the system. However, such networks do not have a convenient
snooping mechanism and do not provide an cfficicnt broadcast capability. In such systems, thc cache
coherence problem can be solved using some variant of directory schemes.

SNOOPY PROTOCOLS

In using private caches associated with processors tied to a common bus, two approaches have been
practiced for maintaining cache consist-ecncy:write invalidate and write update policies.Essentially, the
write-invalidate policy will invalidate all remote copies when a local cache block is updated. The write

update policy will broadcast the new data block to all caches containing a copy of the block.

Shared = Shamd
| ‘ | K J res Memmy ‘ ‘ | ‘K | ses Memo:y
Caches Caches
Processors Processors
(a) Consistent copies of block X are in shared memory (b) After a write-Invalidate operation by P,

and three processor caches

e 18
[ [_“?’ .‘ ikt [ Mt:jw{:)‘rjy

k | Bus
& 6

(c) After a write-update operation by Py

Caches

Processors

Department of Computer Science & Engineering, SIT Tumakuru-03 ~ Page40



Advanced Computer Architecture — VIII Semester CSE ~ Prof.Prasanna Kumar K R, Faculty, SIT CSE

Using a write-in validate protocol, the processor Pl modifies (writes) its cache from X to X’, and all other
copies are invalidated via the bus (denoted I in Fig. ). invalidated blocks are sometimes called dirty,
meaning they should not be used.

The write update protocol (Fig.c) demands the new block content .X” be broadcast to all cache copies via
the bus. The memory copy is also updated if write-through caches are used. In using write-back caches,
the memory copy is updated later at block replacement time.

Write Through Caches: The states of a cache block copy change with respect to read,write , and
replacement operations in thc cache shows the state transitions for two basic write-invalidate snoopy
protocols developed for write-through and write-back caches, respectively. A block copy of a write
through cache i attached to processor ii can assume one of two possible cache states: valid or invalid.

RII), W)
R(1)
WiI)
Z{l
W) o

W(), 1)
(a) Write-through cache

A remote processor is denoted j, where j # i. For each ofthe two cache states, sis possible events may take
place. Note that all cache copies of the same block use the same transition graph in making state changes.
In a miid valid state , all processors can read R(i), R(j) safely. Local processor i can also write W(i)
safely in a valid state. The invalid state corresponds to the case of thc block either being invalidated or
being replaced (Z(i) or Z(j").

Write Back Caches: The valid‘ state of a write-back cache can be further split into two cache states.
Labeled RW and RO as shown in Fig.. Thc INV (invalidated or not-in-cache} cache state is equivalent to
the rm-ora: state mentioned before. This three-state coherence scheme corresponds to an ownership
protocol.

When the memory owns a block, caches can contain only the RO copies of the block. In other words,
multiple copies may exist in the RD state and every processor having a copy (called a keeper of the copy)
can read R(i),R(j) safely.
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The Inv state is entered whenever a remote processor writes W(j) its local copy or the local processor
replaces Z(i) its own block copy. The RW state corresponds to only one cache copy existing in the entire
system owned by the local processor i. Read (R(i) and write W(i)) can be safely performed in the RW
state. From either the RO state or the INV state, the cache block becomes uniquely owned when a local
write W(i) takes place.

RW: Read-Write
RO: Read Only
Wi W) INV: Invalidated or
Z(1) not in cache
R{), Z0), Wi, £(1)

Wil) = Write to block by processor i. W(j) = Write to biock copy in cache j by processor J = 1.
R(i) = Read block by processor i. R(j) = Read block copy in cache j by processor j£ .
Z{l) = Raplace block in cache /. Z(j) = Replace biock copy in cache j£ .

(b) Write-back cache

Write-once Protocol James Goodman (1983) proposed a cache coherence protocol for bus-based
multiprocessors. This scheme combines the advantages of both write-through and write-back invalidations.
In order to reduce bus traffic, the very first write of a cache block uses a write-through policy.

This will result in a consistent memory copy while all other cache copies are invalidated. Afier the first
write, shared memory is updated using a write-back policy. This scheme can be described by the four-state
transition graph shown in Fig. 7.16. The four cache states are defined below:

* lalid: The cache block, which is consistent with the memory copy, has been read from shared memory
and has not been modified.

Invalid: The block is not found in the cache or is inconsistent with the memory copy.

Reserved: Data has been written exactly once since being read from shared memory. The cache copy
15 consistent with the memory copy, which is the only other copy.

Dirty; The cache block has been modified (writfen) more than once, and the cache copy is the only one
in the system (thus mconsistent with all other copies).
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UNIT V : DIRECTORY BASED PROTOCOLS

A write-invalidate protocol may lead to heavy bus traffic caused by read-misses, resulting from the processor
updating a variable and other processors trying to read the same variable. On the other hand, the write-update
protocol may update data items in remote caches which will never be used by other processors. In fact, these
problems pose additional limitations in using buses to build large multiprocessors.

When a multistage or packet switched network is used to build a large multiprocessor with hundreds of
processors, the snoopy cache protocols must be modified to suit the network capabilities. Since broadcasting
Is expensive to perform in such a network, consistency commands will be sent only to those caches that keep
a copy of the block. This leads to directory-based protocols for network-connected multiprocessors.

Directory Structures In a multistage or packet switched network, cache coherence is supported by using
cache directories to store information on where copies of cache blocks reside. Various directory-based
protocols differ mainly in how the directory maintains information and what information it stores,

Tang (1976) proposed the first directory scheme, which used a central directory containing duplicates of
all cache directories. This central directory, providing all the information needed to enforce consistency, 1s
usually very large and must be associatively searched, like the individual cache directories. Contention and
long search times are two drawbacks in using a central directory for a large multiprocessor.

A distributed-directory scheme was proposed by Censier and Feautrier (1978). Each memory module
maintains a separate directory which records the state and presence information for each memory block. The
state information is local, but the presence information indicates which caches have a copy of the block.

In Fig. 7.17, a read-miss (thin lines) in cache 2 results in a request sent to the memory module. The
memory controller retransmits the request to the dirty copy in cache 1. This cache writes back its copy. The
memory module can supply a copy to the requesting cache. In the case of a write-hir at cache 1 (bold lines),
a command 1s sent to the memory controller, which sends invalidations to all caches (cache 2) marked in the
presence vector residing in the directory D;.

S [ ¥ | — s )
L
I :jlﬁ - = ﬁ Interconnection Netwaork ﬁ ]
1 il I
[Ee5 | S — [ S ]
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A cache-coherence protocol that does not use broadcasts must store the locations of all cached copies of
each block of shared data. This list of cached locations, whether centralized or distributed, is called a cache
directory. A directory entry for each block of data contains a number of pointers to specify the locations of
copies of the block, Each directory entry also contains a dirty bit o specify whether a particular cache has
permission to write the associated block of data,

Different types of directory protocols fall under three primary categories: full map directories, limited
directories, and chained directories. Full-map directories store enough data associated with each block in
global memory so that evety cache in the system can simultaneously store a copy of any block of data. That
13, each directory entry contains N pointers, where N is the number of processors in the system.

Full-Map Directories The full-map protocol implements directory entries with one bit per processor and a
dirty bit, Each bit represents the status of the block in the corresponding processor s cache (present or absent),
If the dirty bit is set, then one and only one processor’s bit is set and that processor can write into the block.

A cache maintains two bits of state per block. One bit indicates whether a block is valid, and the other
indicates whether a valid block may be written. The cache coherence protocol must keep the state bits in the
memory directory and those in the cache consistent.

Figure 7.18a illustrates three different states of a full-map directory. In the first state, location X is missing
in all of the caches in the system. The second state results from three caches (C1, C2, and C3) requesting
copies of location X. Three pointers (processor bits) are set in the entry to indicate the caches that have copies
of the block of data. In the first two states, the dirty bit on the left side of the directory entry is set to clean (C),
indicating that no processor has permission to write to the block of data. The third state results from cache
(3 requesting write permission for the block. In the final state, the dirty bit is set to dirty (D), and there is a
single pointer to the block of data in cache C3.

Let us examine the transition from the second state to the third state in more detail. Once processor P3
issues the write to cache C3. the following events will take nlace:
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(1) Cache C3 detects that the block containing location X is valid but that the processor does not have

permission to write to the block, indicated by the block'’s wnte-permission bit m the cache,

(2) Cache C3 issues a write request to the memory module containing location X and stalls processor P3,

(3) The memory module 1ssues mvahdate requests to caches Cland C2.

(4) Caches Cl and C2 receive the invalidate requests, set the appropriate bit to indicate that the block

contaimng location X is invalid and send acknowledgments back to the memory module,

(5) The memory module receives the acknowledgments, sets the dirty bat, clears the pointers to caches Cl

and C2, and sends wnite permission to cache C3,

(6) Cache C3 receives the wnte permission message, updates the state in the cache, and reactivates

processor P3,
Sharad memary Shared mamary
X[(C] | | | [eee]| |Data] x:ICF;h‘I I I--~1\lﬂaal
Cache Cache Cache Cache Cgcha Cagha
i X:|Data] | | X: b B
GO (D D) GO (D )
Read X Read X Read X Write X
Shared mamary
XiD] | [ | |eee] xJDﬂaI
Cache Cache yohe
1] X
ey (2) G
{a) Three states of a full-map directory
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Limited Directories Limited direciory protocols are designed to solve the directory size problem,
Restricting the number of simultaneously cached copies of any particular block of data limits the growth of
the directory to a constant factor,

A directory protocol can be classified as Dir; X using the notation from Agarwal et al (1988). The symbol
i stands for the number of pointers, and X is NB for a scheme with no broadcast. A full-map scheme without

broadcast 1s represented as Diry AB. A limited directory protocol that uses i < N pointers is denoted Dir, NB,
The limited directory protocol is similar to the full-map directory, except in the case when more than i caches
request read copies of a particular block of data.

Shared memory Shared memaory

/ ;N

Cache / Cac Cache Cache J| Cache Cache

%: |Data|| | X: |Data||*** X: | Data *0¢1 x| Data

(B " (e) (P3) LRy ez (P3)
Read X

{b) Eviction in a limited directary

Figure 7.18b shows the situation when three caches request read copies in a memory system with a
Dir, NB protocol. In this case, we can view the two-pointer directory as a two-way set-associative cache of
pointers to shared copies. When cache C3 requests a copy of location X, the memory module must invalidate
the copy in either cache C1 or cache C2. This process of pointer replacement is called eviction. Since the
directory acts as a set-associative cache, it must have a pointer replacement policy.

If the multiprocessor exhibits processor locality in the sense that in any given inferval of time only a small
subset of all the processors access a given memory word, then a limited directory 1s sufficient to capture this
small worker set of processors.

Department of Computer Science & Engineering, SIT Tumakuru-03 ~ Page47



Advanced Computer Architecture — VIII Semester CSE ~ Prof.Prasanna Kumar K R, Faculty, SIT CSE

Chained Directories Chained directories realize the scalability of limited directories without restricting
the number of shared copies of data blocks. This type of cache coherence scheme is called a chained scheme
because it keeps track of shared copies of data by maintaining a chain of directory pointers.

The simpler of the two schemes implements a singly linked chain, which is best described by example
(Fig. 7.18c). Suppose there are no shared copies of location X. If processor P1 reads location X, the memory
sends a copy to cache C1, along with a chain termination (CT) pointer. The memory also keeps a pointer to
cache C1. Subsequently, when processor P2 reads location X, the memory sends a copy to cache C2, along
with the pointer to cache C1. The memory then keeps a pointer to cache C2.

By repeating the above step, all of the caches can cache a copy of the location X. If processor P3 writes
to location X, it is necessary to send a data invalidation message down the chain. To ensure sequential
consistency, the memory module denies processor P3 write permission until the processor with the chain
termination pointer acknowledges the invalidation of the chain. Perhaps this scheme should be called a gossip
protocol (as opposed to a snoopy protocol) because information is passed from individual to individual rather
than being spread by covert observation.

The possibility of cache block replacement complicates chained-directory protocols.

Suppose that caches C1 through CN all have copies of location X and that location X and location Y map
to the same (direct-mapped) cache line. If processor P, reads location Y, it must first evict location X from its
cache with the following possibilities:

(1) Senda message down the cham to cache C;_ | witha pointer to cache Cy and splice C; out of the chain,
or

(2) Invahdate location X in cache C; through cache €y,

Shared memary Shared mamary
x: (€] Toma| x[C[ [at]

P

Cachg Cache Cache Cache Ca'cna Cache
x:[Data]cT] [ x:[DatacT] | x:[Data] | ]|"*"
(P1) (P2) (P3) (P1) (pP2) (P3)

Read X Write X
{c) The chained directary
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MESSAGE-PASSING MECHANISMS

Message passing in a multicomputer network demands special hardware and software
support. In this section, we study the store-and-forward and wormhole routing schemes and

analyze their communication latencies. We introduce the concept of virtual channels, Deadlock situations in
a message-passing network are examined. We show how to avoid deadlocks using virtual channels.

7.4.1 Message-Routing Schemes

Message formats are introduced below. Refined formats led to the improvement from store-and-forward to
wormhole routing in two generations of multicomputers. A handshaking protocol is described for asynchronous
pipelining of successive routers along a communication path. Finally, latency analysis is conducted to show
the time difference between the two routing schemes presented.

Message Formats Information units used in message routing are specified in Fig. 7.26. A message 1s the
logical unit for internode communication, It is often assembled from an arbitrary number of fixed-length
packets, thus it may have a variable length.

Message

Packet

- -

FtiDID|{D|DIDID|S|R

R: Routing information
5. Sequence Number
D: Data only fits

A packet 1s the basic unit containing the destination address for routing purposes. Because different
packets may arrive at the destination asynchronously, a sequence number is needed in each packet to allow
reassembly of the message transmitted,

A packet can be further divided into a number of fixed-length flits (flow control digits). Routing information
(destination) and sequence number occupy the header flits. The remaining flits are the data elements of a
packet,
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In multicomputers with store-and-forward routing, packets are the smallest unit of information
transmission. In wormhole-routed networks, packets are further subdivided into flits, The flit length is often

affected by the network size.

The packet length is determined by the routing scheme and network implementation. Typical packet
lengths range from 64 to 512 bits. The sequence number may occupy one to two flits depending on the
message length, Other factors affecting the choice of packet and flit sizes include channel bandwidth, router
design, network traffic intensity, efc.

Store-and-Forward Routing  Packets ate the basic unit of information flow in a store-and-forward network.
The concept is illustrated in Fig, 7.27a, Each node is required to use a packet buffer, A packet is transmitted
from a source node to a destination node through a sequence of intermediate nodes.

When a packet reaches an intermediate node, it s first stored in the buffer. Then it is forwarded to the next
node if the desired output channel and a packet buffer in the receiving node are both available.

The latency in store-and-forward networks is directly proportional to the distance (the number of hops)
between the source and the destination, This routing scheme was implemented in the first generation of
multicomputers,

Wormhole Routing By subdividing the packet info smaller flits, latter gencrations of multicomputers
implement the wormhole routing scheme, as illustrated in Fig. 7.27b. Flit buffers are used in the hardware
routers attached to nodes. The transmission from the source node to the destination node is done through a
sequence of routers,
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{(a) Store-and-fonward routing using packet buffers in successive nodes
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All the flits in the same packet are transmitted in order as inseparable companions in a pipelined fashion.
The packet can be visualized as a railroad train with an engine car (the header flit) towing a long sequence
of box cars (data flits).

Only the header flit knows where the train (packet) is going. All the data flits (box cars) must follow the
header flit. Different packets can be interleaved during transmission. However, the flits from different packets

cannot be mixed up. Otherwise they may be towed to the wrong destinations.
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