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UNIT I- LEXICAL ANALYSIS  

 

INRODUCTION TO COMPILING  

Translator:  

It is a program that translates one language to another.  

 

 

source code Translator target code 

Types of Translator:  

1.Interpreter  

2.Compiler  
3.Assembler  
 

1.Interpreter:  

It is one of the translators that translate high level language to low level language.  

 

 

high level language Interpreter low level language 
 
 

During execution, it checks line by line for errors. 
Example: Basic, Lower version of Pascal.  
 

2.Assembler:  

It translates assembly level language to machine code.  

 

assembly language machine code 
Assembler 

 

Example: Microprocessor 8085, 8086. 

 

3.Compiler: 
It is a program that translates one language(source code) to another language (target 

code). 

source code 

 
 

Compiler 
target code  

 

It executes the whole program and then displays the errors. 

Example: C, C++, COBOL, higher version of Pascal.  

Difference between compiler and interpreter:

 
Compiler Interpreter 

It is a translator that translates high level to 

low level language 

It is a translator that translates high level to low 

level language 

It displays the errors after the whole program is 

executed. 

It checks line by line for errors. 

Examples: Basic, lower version of Pascal. Examples: C, C++, Cobol, higher version of 

Pascal. 



 
 
 

PARTS OF COMPILATION  

 

There are 2 parts to compilation:  

1. Analysis  
2. Synthesis  

 

Analysis part breaks down the source program into constituent pieces and creates an 

intermediate representation of the source program.  

Synthesis part constructs the desired target program from the intermediate representation.  

 source code  

 

Analysis  

intermediate code 

Synthesis  

 

 

object code  

 

Software tools used in Analysis part:  

1) Structure editor:  

   Takes as input a sequence of commands to build a source program.  

   The structure editor not only performs the text-creation and modification functions of an  

 ordinary text editor, but it also analyzes the program text, putting an appropriate  

 hierarchical structure on the source program.  

   For example , it can supply key words automatically - while …. do and begin….. end.  

2) Pretty printers :  

   A pretty printer analyzes a program and prints it in such a way that the structure of the  
 program becomes clearly visible.  

   For example, comments may appear in a special font.  

3) Static checkers :  

   A static checker reads a program, analyzes it, and attempts to discover potential bugs  

 without running the program.  

   For example, a static checker may detect that parts of the source program can never be  

 executed. 

4) Interpreters :  

   Translates from high level language ( BASIC, FORTRAN, etc..) into machine language.    

An interpreter might build a syntax tree and then carry out the operations at the nodes as  

 it walks the tree.  

   Interpreters are frequently used to execute command language since each operator  

executed in a command language is usually an invocation of a complex routine such as an 

editor or complier.  



 
 
 

ANALYSIS OF THE SOURCE PROGRAM  

 

Analysis consists of 3 phases:  

Linear/Lexical Analysis :  

 

   It is also called scanning. It is the process of reading the characters from left to right and  

 grouping into tokens having a collective meaning.  

 

   For example, in the assignment statement a=b+c*2, the characters would be grouped into  

 the following tokens:  

i)   The identifier1 ‘a’  

ii)  The assignment symbol (=)  

iii)  The identifier2 ‘b’  
iv)  The plus sign (+)  

v)  The identifier3 ‘c’  

vi)  The multiplication sign (*)  
vii) The constant ‘2’  

 

Syntax Analysis :  
 

   It is called parsing or hierarchical analysis. It involves grouping the tokens of the source  
 program into grammatical phrases that are used by the compiler to synthesize output.  
 

   They are represented using a syntax tree as shown below:  

=  

 

a + 

b * 

c 2 
 

   A syntax tree is the tree generated as a result of syntax analysis in which the interior  
 nodes are the operators and the exterior nodes are the operands.  

   This analysis shows an error when the syntax is incorrect. 

Semantic Analysis :  

   It checks the source programs for semantic errors and gathers type information for the  

 subsequent code generation phase. It uses the syntax tree to identify the operators and  

 operands of statements.  

 

   An important component of semantic analysis is type checking. Here the compiler  

 checks that each operator has operands that are permitted by the source language  

 specification.  



 
 
 

PHASES OF COMPILER  

 

A Compiler operates in phases, each of which transforms the source program from one 

representation into another. The following are the phases of the compiler:  

Main phases:  

1) Lexical analysis  

2) Syntax analysis  

3) Semantic analysis  
4) Intermediate code generation  

5) Code optimization  

6) Code generation  

 

Sub-Phases:  
1) Symbol table management  

2) Error handling  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEXICAL ANALYSIS:  

   It is the first phase of the compiler. It gets input from the source program and produces  

 tokens as output.  

   It reads the characters one by one, starting from left to right and forms the tokens.    

Token : It represents a logically cohesive sequence of characters such as keywords,  

 operators, identifiers, special symbols etc.  
Example: a + b = 20  

Here,  a,b,+,=,20 are all separate tokens.  

Group of characters forming a token is called the Lexeme.  

   The lexical analyser not only generates a token but also enters the lexeme into the symbol  
 table if it is not already there.  



 
 
 

SYNTAX ANALYSIS:  

 

   It is the second phase of the compiler. It is also known as parser.  

   It gets the token stream as input from the lexical analyser of the compiler and generates  

 syntax tree as the output.  

   Syntax tree:  

It is a tree in which interior nodes are operators and exterior nodes are operands.    

Example: For a=b+c*2, syntax tree is  

=  

 

a + 

b * 

c 2 

SEMANTIC ANALYSIS:  

 

   It is the third phase of the compiler.  

   It gets input from the syntax analysis as parse tree and checks whether the given syntax is  

 correct or not.  

   It performs type conversion of all the data types into real data types.  

 

INTERMEDIATE CODE GENERATION:  

 

   It is the fourth phase of the compiler.  

   It gets input from the semantic analysis and converts the input into output as intermediate  
 code such as three-address code.  

   The three-address code consists of a sequence of instructions, each of which has atmost  

 three operands.  
Example: t1=t2+t3  

 

CODE OPTIMIZATION:  

 

   It is the fifth phase of the compiler.  

   It gets the intermediate code as input and produces optimized intermediate code as  

 output.  

   This phase reduces the redundant code and attempts to improve the intermediate code so  
 that faster-running machine code will result.  

   During the code optimization, the result of the program is not affected.    

To improve the code generation, the optimization involves  

 - deduction and removal of dead code (unreachable code).  

 - calculation of constants in expressions and terms.  

 - collapsing of repeated expression into temporary string.  

 - loop unrolling.  

- moving code outside the loop.  

- removal of unwanted temporary variables.  



 
 

CODE GENERATION:  

 

   It is the final phase of the compiler.  

   It gets input from code optimization phase and produces the target code or object code as  
 result.  

   Intermediate instructions are translated into a sequence of machine instructions that  

 perform the same task.  

   The code generation involves  

- allocation of register and memory  

- generation of correct references  

- generation of correct data types  

- generation of missing code  

SYMBOL TABLE MANAGEMENT:  

 

   Symbol table is used to store all the information about identifiers used in the program.  

   It is a data structure containing a record for each identifier, with fields for the attributes of  

 the identifier.  

   It allows to find the record for each identifier quickly and to store or retrieve data from  

 that record.  

   Whenever an identifier is detected in any of the phases, it is stored in the symbol table.  

 

ERROR HANDLING:  

 

   Each phase can encounter errors. After detecting an error, a phase must handle the error  

 so that compilation can proceed.  

   In lexical analysis, errors occur in separation of tokens.  

   In syntax analysis, errors occur during construction of syntax tree.  

   In semantic analysis, errors occur when the compiler detects constructs with right  

 syntactic structure but no meaning and during type conversion.  

   In code optimization, errors occur when the result is affected by the optimization.    

In code generation, it shows error when code is missing etc.  

 

To illustrate the translation of source code through each phase, consider the statement a=b+c*2. 

The figure shows the representation of this statement after each phase:  



 
 

a=b+c*2  

 

Lexical analyser  

 

id1=id2+id3*2  

 

Syntax analyser  

=  
Symbol Table  

id1 + 
a id1 
b id2 id2 * 
c id3 

id3 2 

Semantic analyser = 

 
= 

id1 + 

id2 * 

id3   inttoreal  

 

2  

Intermediate code generator  

 

temp1=inttoreal(2)  

temp2=id3*temp1  

temp3=id2+temp2  

id1=temp3  

 

Code optimizer  
 

temp1=id3*2.0  
id1=id2+temp1  

 

Code generator  

 

 

MOVF id3,R2  

MULF #2.0,R2  

MOVF id2,R1  

ADDF R2,R1  

MOVF R1,id1  



 
 
 

COUSINS OF COMPILER  

1.  Preprocessor  

2.  Assembler  

3.  Loader and Link-editor  

PREPROCESSOR  

A preprocessor is a program that processes its input data to produce output that is used as 

input to another program. The output is said to be a preprocessed form of the input data, which is 

often used by some subsequent programs like compilers.  
They may perform the following functions :  

1.  Macro processing  

2.  File Inclusion  

3.  Rational Preprocessors  

4.  Language extension 

1. Macro processing:  

A macro is a rule or pattern that specifies how a certain input sequence should be mapped to 

an output sequence according to a defined procedure. The mapping process that instantiates a 

macro into a specific output sequence is known as macro expansion.  

2. File Inclusion:  

Preprocessor includes header files into the program text. When the preprocessor finds an 

#include directive it replaces it by the entire content of the specified file.  

 

3. Rational Preprocessors:  

These processors change older languages with more modern flow-of-control and 

datastructuring facilities.  

4. Language extension :  

These processors attempt to add capabilities to the language by what amounts to built-in 

macros. For example, the language Equel is a database query language embedded in C.  

ASSEMBLER  

Assembler creates object code by translating assembly instruction mnemonics into 
machine code. There are two types of assemblers:  

   One-pass assemblers go through the source code once and assume that all symbols will  

 be defined before any instruction that references them.  

   Two-pass assemblers create a table with all symbols and their values in the first pass, and  
 then use the table in a second pass to generate code.  

 

LINKER AND LOADER  

A linker or link editor is a program that takes one or more objects generated by a 
compiler and combines them into a single executable program.  
Three tasks of the linker are :  

1. Searches the program to find library routines used by program, e.g. printf(), math routines.  

2. Determines the memory locations that code from each module will occupy and relocates its 

instructions by adjusting absolute references  
3. Resolves references among files.  

 

A loader is the part of an operating system that is responsible for loading programs in 

memory, one of the essential stages in the process of starting a program.  



 
 
 
 

GROUPING OF THE PHASES  

 

Compiler can be grouped into front and back ends:  

- Front end: analysis (machine independent)  

These normally include lexical and syntactic analysis, the creation of the symbol table, 

semantic analysis and the generation of intermediate code. It also includes error handling that 

goes along with each of these phases.  

- Back end: synthesis (machine dependent)  

It includes code optimization phase and code generation along with the necessary error 

handling and symbol table operations.  

 

Compiler passes  

A collection of phases is done only once (single pass) or multiple times (multi pass)  

   Single pass: usually requires everything to be defined before being used in source  
 program.  

   Multi pass: compiler may have to keep entire program representation in memory.  

 

Several phases can be grouped into one single pass and the activities of these phases are 
interleaved during the pass. For example, lexical analysis, syntax analysis, semantic analysis and 
intermediate code generation might be grouped into one pass.  

 

COMPILER CONSTRUCTION TOOLS These are specialized tools that have been developed for helping 

implement various phases of a compiler. The following are the compiler construction tools:  

 

1) Parser Generators:  

-These produce syntax analyzers, normally from input that is based on a context-free 
grammar.  

-It consumes a large fraction of the running time of a compiler. -

Example-YACC (Yet Another Compiler-Compiler).  

 

2) Scanner Generator:  

-These generate lexical analyzers, normally from a specification based on regular expressions. -The 

basic organization of lexical analyzers is based on finite automation.  

3) Syntax-Directed Translation:  

-These produce routines that walk the parse tree and as a result generate intermediate code. -
Each translation is defined in terms of translations at its neighbor nodes in the tree.  

 

4) Automatic Code Generators:  

-It takes a collection of rules to translate intermediate language into machine language. The  

rules must include sufficient details to handle different possible access methods for data. 

5) Data-Flow Engines:-It does code optimization using data-flow analysis, that is, the gathering of information about 

how values are transmitted from one part of a program to each other part.  



 
 
 

LEXICAL ANALYSIS  

 

Lexical analysis is the process of converting a sequence of characters into a sequence of  
tokens. A program or function which performs lexical analysis is called a lexical analyzer or  
scanner. A lexer often exists as a single function which is called by a parser or another function.  

 

THE ROLE OF THE LEXICAL ANALYZER  

 

   The lexical analyzer is the first phase of a compiler.  

   Its main task is to read the input characters and produce as output a sequence of tokens  

 that the parser uses for syntax analysis.  

 

token  

source lexical parser 

program analyser 

get next token  

 

 

symbol  

table  

 

 

   Upon receiving a “get next token” command from the parser, the lexical analyzer reads  

 input characters until it can identify the next token.  

ISSUES OF LEXICAL ANALYZERThere are three issues in lexical analysis:  

    To make the design simpler.  

   To improve the efficiency of the compiler.    

To enhance the computer portability.  

TOKENS  

A token is a string of characters, categorized according to the rules as a symbol (e.g., 

IDENTIFIER, NUMBER, COMMA). The process of forming tokens from an input stream of 

characters is called tokenization.  

A token can look like anything that is useful for processing an input text stream or text file. 

Consider this expression in the C programming language: sum=3+2;  

 

 

Lexeme Token type 

sum Identifier 

= Assignment operator 

3 Number 

+ Addition operator 

2 Number 



 
 

LEXEME:  

Collection or group of characters forming tokens is called Lexeme.  

 

PATTERN:  

A pattern is a description of the form that the lexemes of a token may take.  

 

In the case of a keyword as a token, the pattern is just the sequence of characters that  

form the keyword. For identifiers and some other tokens, the pattern is a more complex structure 
that is matched by many strings.  
 

Attributes for Tokens  

 

Some tokens have attributes that can be passed back to the parser. The lexical analyzer 
collects information about tokens into their associated attributes. The attributes influence the 
translation of tokens.  

 

i)  Constant : value of the constant  

ii) Identifiers: pointer to the corresponding symbol table entry.  

ERROR RECOVERY STRATEGIES IN LEXICAL ANALYSIS:  

 

The following are the error-recovery actions in lexical analysis:  

1) Deleting an extraneous character.  

 

2) Inserting a missing character.  

 

3) Replacing an incorrect character by a correct character.  

4) Transforming two adjacent characters.  

 

5) Panic mode recovery: Deletion of successive characters from the token until error is 

resolved.  

INPUT BUFFERING  
 

We often have to look one or more characters beyond the next lexeme before we can be sure 
we have the right lexeme. As characters are read from left to right, each character is stored in the 
buffer to form a meaningful token as shown below:  

 

Forward pointer  

A =    B +    C 

 

Beginning of the token Look ahead pointer 

 

 

We introduce a two-buffer scheme that handles large look aheads safely. We then  
consider an improvement involving "sentinels" that saves time checking for the ends of buffers.  



 
 
 

BUFFER PAIRS  

 

 A buffer is divided into two N-character halves, as shown below 

 

: : E : : = : : M : * C : * : : * : 2 : eof 

 

lexeme_beginning 

forward 

 

 Each buffer is of the same size N, and N is usually the number of characters on one disk 

block. E.g., 1024 or 4096 bytes. 

 Using one system read command we can read N characters into a buffer. 

 If fewer than N characters remain in the input file, then a special character, represented 

by eof, marks the end of the source file. 

 Two pointers to the input are maintained: 

1. Pointer lexeme_beginning, marks the beginning of the current lexeme, 

whose extent we are attempting to determine.  
2. Pointer forward scans ahead until a pattern match is found.  

Once the next lexeme is determined, forward is set to the character at its right  
end.  

  The string of characters between the two pointers is the current lexeme.  

After the lexeme is recorded as an attribute value of a token returned to the parser,  

lexeme_beginning is set to the character immediately after the lexeme just found.  

 

Advancing forward pointer:Advancing forward pointer requires that we first test whether we 

have reached the end of one of the buffers, and if so, we must reload the other buffer from the 

input, and move forward to the beginning of the newly loaded buffer. If the end of second buffer 

is reached, we must again reload the first buffer with input and the pointer wraps to the 

beginning of the buffer.  

 

Code to advance forward pointer:  

if forward at end of first half then begin  

 reload second half;  

forward := forward + 1 

end 

else if forward at end of second half then begin 

reload second half; 

move forward to beginning of first half 

end 
else forward := forward + 1;  

 

SENTINELS  

   For each character read, we make two tests: one for the end of the buffer, and one to  

determine what character is read. We can combine the buffer-end test with the test for the  

 current character if we extend each buffer to hold a sentinel character at the end.  

    The sentinel is a special character that cannot be part of the source program, and a natural  

 choice is the character eof.  



 
 

   The sentinel arrangement is as shown below:  

 

: : E : : = : : M : * : eof C : * : : * : 2 : eof : : : eof 

eof*** 

lexeme_beginning  

forward  
 

Note that eof retains its use as a marker for the end of the 
entire input. Any eof that appears other than at the end of a 
buffer means that the input is at an end.  

 

Code to advance forward pointer:  

 

forward : = forward + 1;  
if forward ↑ = eof then begin  

if forward at end of first half then begin  

 reload second half;  

forward := forward + 1 

end 

else if forward at end of 

second half then begin  

 reload first half;  

move forward to beginning of first half  

end  
else /* eof within a buffer 
signifying end of input */  
 terminate lexical 
analysis  

end  

 

SPECIFICATION OF TOKENS  

There are 3 specifications of tokens:  

1) Strings  

2) Language  

3) Regular expression  

 

Strings and Languages  

An alphabet or character class is a finite set of symbols.  

A string over an alphabet is a finite sequence of symbols 

drawn from that alphabet. A language is any countable set of 

strings over some fixed alphabet.  

In language theory, the terms "sentence" and "word" are often used as synonyms 

for  



"string." The length of a string s, usually written |s|, is the number of 
occurrences of symbols in s.  
For example, banana is a string of length six. The empty string, denoted ε, is 
the string of length  
zero. 

 

 

 

 

  

 

 

 

 

 

Operations on strings  

The following string-related terms are commonly used:  

 

1.  A prefix of string s is any string obtained by removing zero or more 

symbols from the end of  

 string s.  
 

For example, ban is a prefix of banana.  

 

2.  A suffix of string s is any string obtained by removing zero or 

more symbols from the  

 beginning of s.  
For example, nana is a suffix of banana.  

 

3.  A substring of s is obtained by deleting any prefix 

and any suffix from s.  

 For example, nan is a substring of banana.  

4.  The proper prefixes, suffixes, and substrings of a string s are those 

prefixes, suffixes, and  

 substrings, respectively of s that are not ε or not equal to s itself.  

 

5.  A subsequence of s is any string formed by deleting zero or more not 

necessarily consecutive  

 positions of s.  
For example, baan is a subsequence of banana.  

 

Operations on languages:  

 

The following are the operations that can be applied to languages:  

1.Union  

2.Concatenation  

3.Kleene closure  

4.Positive closure  



The following example shows the operations on strings:  

 

Let L={0,1} and S={a,b,c}  

1.  Union : L U S={0,1,a,b,c} 

2.  Concatenation : L.S={0a,1a,0b,1b,0c,1c} 

3.  Kleene closure : L*={ ε,0,1,00….} 

4.  Positive closure : L+={0,1,00….} 

 

Regular Expressions Each regular expression r denotes a language L(r).  

 

Here are the rules that define the regular expressions over some alphabet 

Σ and the languages that those expressions denote:  

1. ε is a regular expression, and L(ε) is { ε }, that is, the language 

whose sole member is the empty string.  
 

2. If ‘a’ is a symbol in Σ, then ‘a’ is a regular expression, and L(a) = {a}, 
that is, the language with one string, of length one, with ‘a’ in its one 
position.  

 

 

 

 

 

 

 

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then,  

 

a)  (r)|(s) is a regular expression denoting the language L(r) U L(s).  

b)  (r)(s) is a regular expression denoting 

the language L(r)L(s). c) (r)* is a regular 

expression denoting (L(r))*.  
d)  (r) is a regular expression denoting L(r).  

 

4. The unary operator * has highest precedence and is left associative.  

 

5. Concatenation has second highest precedence and is left associative.  

6. | has lowest precedence and is left associative.  

 

Regular set  

 

A language that can be defined by a regular expression is called a regular set.  

If two regular expressions r and s denote the same regular set, we say 

they are equivalent and write r = s.  

There are a number of algebraic laws for regular 

expressions that can be used to manipulate into equivalent forms.  
For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative.  
 

Regular Definitions  
 



Giving names to regular expressions is referred to as a Regular 
definition. If Σ is an  
alphabet of basic symbols, then a regular definition is a sequence of 
definitions of the form  
 

dl → r 1  

d2 → r2  

………  
dn → rn  

 

1. Each di is a distinct name.  

2. Each ri is a regular expression over the alphabet Σ U {dl, d2,. . . , di-l}.  

Example: Identifiers is the set of strings of letters and digits beginning 

with a letter. Regular definition for this set:  

letter → A | B | …. | Z | a | b | …. | z |  

digit → 0 | 1 | …. | 9  

id → letter ( letter | digit ) *  

Shorthands  

Certain constructs occur so frequently in regular expressions 

that it is convenient to introduce notational shorthands for them.  

1. One or more instances (+):  

 

- The unary postfix operator + means “ one or more instances of” .  

- If r is a regular expression that denotes the language L(r), then ( r )+ is 

a regular expression that denotes the language   (L (r ))+  

- Thus the regular expression a+ denotes the set of all 

strings of one or more a’s.  

- The operator + has the same precedence and associativity 

as the operator *.  

 

2. Zero or one instance ( ?):  

- The unary postfix operator ? means 

“zero or one instance of”. - The notation 

r? is a shorthand for r | ε.  

- If ‘r’ is a regular expression, then ( r )? is a regular expression that 

denotes the language L( r ) U { ε }.  

 

3. Character Classes:  

- The notation [abc] where a, b and c are alphabet symbols denotes 

the regular expression a | b | c.  



- Character class such as [a - z] denotes the regular expression a | b | c | d | ….|z.  

 

- We can describe identifiers as being strings generated by 

the regular expression, [A-Za-z][A-Za-z0-9]*  

 

Non-regular Set  A language which cannot be described by any regular expression is a 

non-regular set.  

Example: The set of all strings of balanced parentheses and repeating strings 

cannot be described by a regular expression. This set can be specified by a 

context-free grammar.  

RECOGNITION OF TOKENS  

 

Consider the following grammar fragment:  

stmt → if expr then stmt  

| if expr then stmt else stmt  

| ε  
 

expr → term relop term  
 | term  

 

term → id  

 | num  

where the terminals if , then, else, relop, id and num generate sets of 

strings given by the following regular definitions:  

if →   if 

then →    then 

else →   else 

relop →   <|<=|=|<>|>|>= 

id →   letter(letter|digit)* 

num →   digit+ (.digit+)?(E(+|-)?digit+)? 

 

For this language fragment the lexical analyzer will recognize the 
keywords if, then, else, as well as the lexemes denoted by relop, id, and 
num. To simplify matters, we assume keywords are reserved; that is, they 
cannot be used as identifiers. 

 

 

 

 

 

 

  

 

Transition diagram 
 
A transition diagram is similar to a flowchart for (a part of) the lexer. We draw one for 
each possible token. It shows the decisions that must be made based on the input seen. 
The two main components are circles representing states (think of them as decision 



points of the lexer) and arrows representing edges (think of them as the decisions 
made). 
The transition diagram for relop is shown below. 
 
1. The double circles represent accepting or final states at which point a lexeme has 
been found. There is often an action to be done (e.g., returning the token), which 
is written to the right of the double circle. 
 
2. If we have moved one (or more) characters too far in finding the token, one (or 
more) stars are drawn. 
 
3. An imaginary start state exists and has an arrow coming from it to indicate where 
to begin the process. 
 
It is fairly clear how to write code corresponding to this diagram. You look at the first 
character, if it is <, you look at the next character. If that character is =, you return 
(relop,LE) to the parser. If instead that character is >, you return (relop,NE). If it is 
another character, return (relop,LT) and adjust the input buffer so that you will read 
this 
character again since you have not used it for the current lexeme. If the first character 
was =, you return (relop,EQ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

   

  

 

 

 

 

 

 



 

 

 Recognition of Reserved Words and Identifiers  

 

Recognizing keywords and identifiers presents a problem .  Usually,  

keywords like  if  or  then  are  reserved,  so  they  are  not  identifiers  

even  though  they  look like  identifiers .    
 
 

  There  are two  ways  that  we  can  handle  reserved  words  that  

look like  iden  tifiers:  

1.  Install  the  reserved  words  in  the  symbol  table  initially .   A  

field  of  the  

 symbol -table  entry indicates  that  these  strings  are never  

ordinary  identi   

 fiers , and  tells  which  token  they  represent .   When we find an 

identifier ,  a call to             installlD   places it in the symbol table 

if it is not already there and returns a pointer  

 to  the  symbol -table  entry  for the  lexeme  found .  Of course ,  

any  identifier  

 not in the symbol table during lexical analysis cannot  be a 

reserved word ,  

 so its token is  id .  The function  getToken examines the symbol 

table entry  

 for the  lexeme  found ,  and  returns  whatever token  name  the  

symbol  table  

 says. 

2.  Create  separate  transition  diagrams  for  each  keyword. Note  

that  such  a  transition  diagram  consists  of states  representing 

the  situation  after  each  successive  

letter of the keyword is  seen. 
 

 
 
Recognition of Numbers 

The  transition  diagram  for  token  n u m b e r  is  shown  in  Fig.  

and  is  so far the most  complex  diagram  we have seen .  Beginning in  

state  12,  if we see a  digit ,  we  go  to  state  13.    In  that  state ,  we  can  

read  any  number  of additional  digits .  However , if we see anything but  

a digit  or a dot ,  we have seen a number  

in  the form  of an  integer ; 123  is  an  example .  That  case  is  handled  

by  entering  state  20,  where  we  return  token  n u m b e r  and  a pointer  

to  a table  of constants  

where  the  found  lexeme  is  entered .   These  mechanics  are  not  

shown  on  the  

diagram  but  are  analogous  to  the  way we  handled  identifiers . If  we  

instead  see  a  dot  in  state 13,  then  we  have  an  "optional  fraction ." 

State 14  is  entered ,  and  we  look  for  one  or  more  additional  digits ;  

state 15  is used  for  that  purpose .   If we  see  an E ,  then  we  have  an  

"optional  exponent ," whose  recognition  is  the job  of states 16  through

 19.   Should  we ,  in  state 15, instead  see  anything  but  E  or  a  digit ,  

then  we  have  come  to  the  end  of  the fraction ,  there is  no  exponent ,  



and  we return  the  lexeme found ,  via state 21. 

 

 

 

 

 

 

 

 

 

 

 

 

The transition  diagram ,  shown in  Fig ,  is for whitespace .  In  

that  diagram , we look for one or more  "whitespace"  characters , 

represented by delim in that  diagram — typically these characters would  

be blank ,  tab ,  newline. 

 

 

 

             

Architecture of a Transition -Diagram -Based Lexical Analyzer 

There  are  several  ways  that  a  collection  of  transition  

diagrams  can  be  used to  build  a  lexical  analyzer .   Regardless  of  the  

overall  strategy ,  each  state  is represented  by  a piece  of code .  We  

may  imagine  a  variable  s t a t e  holding  the number  of the  current  

state  for  a  transition  diagram .   A  switch  based  on  the value  of  s t a t 

e  takes  us  to  code  for  each  of the  possible  states ,  where  we find the  

action  of that  state .  Often ,  the  code for  a state  is  itself a switch  

statement or  multiway  branch  that  determines  the  next  state  by  

reading  and  examining the  next  input  character .  

E x a m p l e  3 . 1 0 :  In  Fig .  3.18  we  see  a  sketch  of g e t R e 

l o p O ,  a  C + +  function  whose job is to simulate the transition 



diagram of Fig .  3 . 1 3 and return an object of type TOKEN, that is ,  a 

pair consisting of the token name  (which must be relop in  this  case )  

and  an  attribute  value (the  code  for  one  of  the  six  comparison  

operators  in  this  case ) .  g e t R e l o p first  creates  a  new  object  

retToken and  

initializes its  first  component  to RELOP,  the  symbolic  code for token 

relop .  

 We  see the typical behavior of a state in  case  0 ,  the  case where the  

current  

state  is 0.   A  function  n e x t C h a r ( )  obtains  the  next  character  

from  the  input  

and  assigns  it  to  local  variable  c .  We  then  check  c for  the  three  

characters  we  

expect  to find , making  the  state  transition  dictated  by  the  transition  

diagram  

of Fig . 3.13  in  each  case .  For  example ,  if the  next  input  character is  

= ,  we  go to  state 5. 

If the  next  input  character is not  one that  can begin  a 

comparison operator ,  

then a function f a i l ( )  is called .  W hat f a i l ( )  does depends on the 

global error - 

recovery  strategy  of the  lexical  analyzer .   It  should  reset  the  forward  

pointer  

to  lexemeBegin ,  in  order  to  allow  another  transition  diagram to  be  

applied  to the  true  beginning  of the  unprocessed  input .   It  might  then  

change  the  value  

of state to be the start state for another transition diagram , which will 

search  

for  another  token .   Alternatively ,  if there  is  no  other  transition  

diagram  that  

remains  unused ,  fail ( )  could  initiate  an  error -correction  phase  that  

will  try  

to repair the input  and  find  a lexeme ,  as  discussed in  Section  3.1.4.  

We also show the action for state 8 in Fig . 3.18.  Because state 8 

bears a  * ,  

we  must  retract  the  input  pointer  one  position (i .e . ,  put  c  back  on  

the  input stream ) .  That  task is  accomplished  by  the  function retract ( 

) .  Since  state 8  

represents  the  recognition  of lexeme >=,  we  set  the  second  

component  of  the returned object , which we suppose is named attribute, 

to GT, the code for this operator . • 

To  place  the  simulation  of  one  transition  diagram  in  

perspective ,  let  us  

consider the ways  code like Fig . 3.18  could fit  into the  entire lexical 

analyzer .  

1.  We could arrange for the transition diagrams for each token to 

be tried se  

 quentially . Then , the function f ail ( ) of Example 3.10 resets the pointer  

 forward  and  starts  the  next  transition  diagram ,  each  time  it  is  

called .  

 This  method  allows  us  to  use  transition  diagrams  for  the  individual  



key   

 words ,  like  the  one  suggested  in  Fig . 3.15.   We  have  oniy  to  use  

these before we use the  diagram for id ,  in order for the keywords to be  

reserved words .  

 

 

2.  We  could  run  the  various  transition  diagrams  "in  parallel ,"  

feeding  the  

 next  input  character to  all  of them  and  allowing each  one to  make  

what   

 ever  transitions  it  required .   If we  use  this  strategy ,  we  must  be  

careful  

  to  resolve  the  case  where  one  diagram  finds  a  lexeme  that  

matches  its  

 pattern ,  while  one  or more  other  diagrams  are  still  able to  process  

input .  

 The normal strategy is to take the longest prefix of the input that  matches  

 any  pattern .  That  rule  allows  us  to  prefer identifier  t h e n e x t  to  

keyword  

 t h e n ,  or the  operator - >  to -,  for  example .  

3.  The  preferred  approach ,  and  the  one  we  shall  take  up  in  

the  following  

 sections ,  is to  combine all the transition diagrams into one .  We allow 

the  

 transition  diagram to read input  until there is no possible next  state ,  

and  

 then  take  the  longest  lexeme  that  matched  any  pattern ,  as  we  

discussed  

 in  item (2)  above .   In  our  running  example ,  this  combination  is  

easy ,  

 because  no  two  tokens  can  start  with  the  same  character ;  i.e.,  the 

first  

 character immediately  tells  us  which  token  we  are  looking for.  Thus 

,  we  

 could simply  combine states  0 ,  9 , 12,  and  2 2  into one start  state , 

leaving other  transitions  intact .   However ,  in  general ,  the  problem  

of combining  

transition  diagrams  for  several  tokens  is  more  complex ,  as  we  shall  

see  

shortly .  

 

 

 

 

 

 

 

 

 

 



TOKEN  getRelopO  

{  

TOKEN  retToken  =  new (RELOP ) ;  

while ( 1 ) { /*  repeat  character  processing  until  
a  return 

or  failure  occurs */ 

switch (state ) { 

case  0:  c  =  nextCharQ ; 

if (  c  ==  '<» )  state  =  1; 

else  if (  c  ==  '=' )  
state  =  5; 

else  if (  c  ==  '>' )  
state  - 6; 

else  fail ( ) ; /*  lexeme  is  not  a  
relop  */ 

break ; 

case  1: 
 

case  8 :  retract ( ) ;  

retToken .attribute  =  GT ;  

return (retToken ) ;  
 
 
 
 
 

Figure 3.18:  Sketch of implementation of relop 
transition diagram  

 

 
FINITE AUTOMATA  

 

Finite Automata is one of the mathematical models that consist of 

a number of states and edges. It is a transition diagram that recognizes a 

regular expression or grammar.  

Types of Finite Automata  

 

There are tow types of Finite Automata :  

   Non-deterministic 

Finite Automata (NFA)  

   Deterministic Finite 

Automata (DFA)  

Non-deterministic Finite Automata  

NFA is a mathematical model that consists of 

five tuples denoted by M = {Qn, Ʃ, δ, q 0, fn}  

Qn -  finite set of states 

Ʃ -   finite set of input symbols 

δ -  transition function that maps state-symbol pairs to set of states 

q0 -   starting state 

fn -   final state 

Deterministic Finite Automata 

DFA is a special case of a NFA in which 



i) no state has an ε-transition. 

ii)   there is at most one transition from each state on any input. 

DFA has five tuples denoted by 

M = {Qd, Ʃ, δ , q0, fd} 

Qd -   finite set of states 

Ʃ -   finite set of input symbols 

δ -    transition function that maps state-symbol pairs to set of states 

q0 -    starting state 

fd -    final state 

Construction of DFA from regular expression  

The following steps are involved in the construction of DFA from regular expression:  

i)  Convert RE to NFA using Thomson’s rules  

ii)   Convert NFA to DFA  

iii) Construct minimized DFA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                        SYNTAX ANALYSIS  
 

SYNTAX ANALYSIS 
 

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and 

generates a syntax tree or parse tree. 
 
Advantages of grammar for syntactic specification : 
 

1. A grammar gives a precise and easy-to-understand syntactic specification of a 

programming language. 

2. An efficient parser can be constructed automatically from a properly designed grammar. 

3. A grammar imparts a structure to a source program that is useful for its translation into 

object code and for the detection of errors. 

4. New constructs can be added to a language more easily when there is a grammatical 

description of the language. 
 

THE ROLE OF PARSER 
 

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and 

verifies that the string can be generated by the grammar for the source language. It reports any 

syntax errors in the program. It also recovers from commonly occurring errors so that it can 

continue processing its input. 
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Functions of the parser : 
 

1. It verifies the structure generated by the tokens based on the grammar. 

2. It constructs the parse tree. 

3. It reports the errors. 

4. It performs error recovery. 

 

Issues : 
 
Parser cannot detect errors such as: 

. Variable re-declaration 

2. Variable initialization before use. 

3. Data type mismatch for an operation. 
 
The above issues are handled by Semantic Analysis phase. 
 
Syntax error handling : 
 
Programs can contain errors at many different levels. For example : 

1. Lexical, such as misspelling a keyword. 

2. Syntactic, such as an arithmetic expression with unbalanced parentheses. 

3. Semantic, such as an operator applied to an incompatible operand. 

4. Logical, such as an infinitely recursive call. 
 
Functions of error handler : 
 
1. It should report the presence of errors clearly and accurately. 

2. It should recover from each error quickly enough to be able to detect subsequent errors. 

3. It should not significantly slow down the processing of correct programs. 
 
Error recovery strategies : 
 
The different strategies that a parse uses to recover from a syntactic error are: 
 
1. Panic mode 

2. Phrase level 

3. Error productions 

4. Global correction 
 
Panic mode recovery: 
 

On discovering an error, the parser discards input symbols one at a time until a 

synchronizing token is found. The synchronizing tokens are usually delimiters, such as 

semicolon or end. It has the advantage of simplicity and does not go into an infinite loop. When 

multiple errors in the same statement are rare, this method is quite useful. 
 
Phrase level recovery: 
 

On discovering an error, the parser performs local correction on the remaining input that 

allows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc. 
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Error productions: 
 

The parser is constructed using augmented grammar with error productions. If an error 

production is used by the parser, appropriate error diagnostics can be generated to indicate the 

erroneous constructs recognized by the input. 
 
Global correction: 

Given an incorrect input string x and grammar G, certain algorithms can be used to find a 

parse tree for a string y, such that the number of insertions, deletions and changes of tokens is as 

small as possible. However, these methods are in general too costly in terms of time and space.



CONTEXT-FREE GRAMMARS 
 

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start 

symbol and productions. 
 
Terminals : These are the basic symbols from which strings are formed. 
 
Non-Terminals : These are the syntactic variables that denote a set of strings. These help to 

define the language generated by the grammar. 
 
Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of 

strings it denotes is the language defined by the grammar. 
 
Productions : It specifies the manner in which terminals and non-terminals can be combined to 

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a 

string of non-terminals and terminals. 
 
Example of context-free grammar: The following grammar defines simple arithmetic 

expressions: 
 

expr → expr op expr 

expr → (expr) 

expr → - expr 

expr → id 

op → + 

op → - 

op → * 

op → / 

op → ↑ 
 

In this grammar, 
 

• id + - * / ↑ ( ) are terminals. 

• expr , op are non-terminals. 

• expr is the start symbol. 

• Each line is a production. 
 

Derivations: 
 
Two basic requirements for a grammar are : 

1. To generate a valid string. 

2. To recognize a valid string. 
 
Derivation is a process that generates a valid string with the help of grammar by replacing the 

non-terminals on the left with the string on the right side of the production. 
 

Example : Consider the following grammar for arithmetic expressions : 

E → E+E | E*E | ( E ) | - E | id
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To generate a valid string - ( id+id ) from the grammar the steps are 

1. E → - E 

2. E → - ( E ) 

3. E → - ( E+E ) 

4. E → - ( id+E ) 

5. E → - ( id+id ) 
 

In the above derivation, 

➢ E is the start symbol. 

➢ - (id+id) is the required sentence (only terminals). 

➢ Strings such as E, -E, -(E), . . .  are called sentinel forms. 
 

Types of derivations: 
 
The two types of derivation are: 
 

1. Left most derivation 

2. Right most derivation. 
 

➢ In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for 

replacement. 
 

➢ In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first 

for replacement. 
 

Example: 
 
Given grammar G : E → E+E | E*E | ( E ) | - E | id 
 
Sentence to be derived : – (id+id) 
 
LEFTMOST DERIVATION RIGHTMOST DERIVATION 
 

E→-E E→-E 
 
E→-(E) E→-(E) 
 
E → - ( E+E ) E → - (E+E ) 
 
E → - ( id+E ) E → - ( E+id ) 
 
E → - ( id+id ) E → - ( id+id ) 
 
➢ String that appear in leftmost derivation are called left sentinel forms. 

➢ String that appear in rightmost derivation are called right sentinel forms. 
 

Sentinels: 
 

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or 

terminals, then α is called the sentinel form of G.
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Yield or frontier of tree: 
 

Each interior node of a parse tree is a non-terminal. The children of node can be a 

terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form 

in the parse tree is called yield or frontier of the tree. 
 
Ambiguity: 
 

A grammar that produces more than one parse for some sentence is said to be ambiguous 

grammar. 
 
Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 
 
The sentence id+id*id has the following two distinct leftmost derivations: 
 

E → E+ E E → E* E 
 
E → id + E E→E+ E * E 
 
E → id + E * E E → id + E * E 
 
E → id + id * E E → id + id * E 
 
E → id + id * id E → id + id * id 
 

The two corresponding parse trees are : 
 

E E 
 
 

E + E E * E 
 
id E * E E + E id 
 
 

id id id id 
 
 
 

WRITING A GRAMMAR 
 
There are four categories in writing a grammar : 
 

1. Regular Expression Vs Context Free Grammar 

2. Eliminating ambiguous grammar. 

3. Eliminating left-recursion 

4. Left-factoring. 

Each parsing method can handle grammars only of a certain form hence, the initial grammar may 

have to be rewritten to make it parsable.
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Regular Expressions vs. Context-Free Grammars: 
 

 

➢ The lexical rules of a language are simple and RE is used to describe them. 
 
➢ Regular expressions provide a more concise and easier to understand notation for tokens 

than grammars. 
 

➢ Efficient lexical analyzers can be constructed automatically from RE than from 

grammars. 
 

➢ Separating the syntactic structure of a language into lexical and nonlexical parts provides 

a convenient way of modularizing the front end into two manageable-sized components. 
 

Eliminating ambiguity: 
 
Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost 

derivation can be eliminated by re-writing the grammar. 
 
Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 
 
This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following 

two parse trees for leftmost derivation : 

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR 

It is used to describe the tokens of programming 

languages. 

It consists of a quadruple where S → start 

symbol, P → production, T → terminal, V → 

variable or non- terminal. 

It is used to check whether the given input is 

valid or not using transition diagram. 

It is used to check whether the given input is 

valid or not using derivation. 

The transition diagram has set of states and 

edges. 

The    context-free    grammar    has    set    of 

productions. 

It has no start symbol. It has start symbol. 

It is useful for describing the structure of lexical 

constructs     such     as     identifiers,     constants, 

keywords, and so forth. 

It is useful in describing nested structures 

such as balanced parentheses, matching 

begin-end’s and so on. 
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1. stmt 
 
 
 

if expr then stmt 
 
 
 

E1 
 
 

if expr then stmt else stmt 
 
 
 

E2 S1 S2 
 
 
 

2. stmt 
 
 
 

if expr then stmt else stmt 
 
 
 

E1 S2 
 

if expr then stmt 
 
 
 

E2 S1 
 

To eliminate ambiguity, the following grammar may be used: 
 

stmt → matched_stmt | unmatched_stmt 
 

matched_stmt → if expr then matched_stmt else matched_stmt | other 
 

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 
 
 
 

Eliminating Left Recursion: 
 

A grammar is said to be left recursive if it has a non-terminal A such that there is a 

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive 

grammars. Hence, left recursion can be eliminated as follows:
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If there is a production A → Aα | β it can be replaced with a sequence of two productions 
 

A → βA’ 
 
A’ → αA’ | ε 
 

without changing the set of strings derivable from A. 
 
Example : Consider the following grammar for arithmetic expressions: 
 
E → E+T | T 
 
T → T*F | F 
 
F → (E) | id 
 
First eliminate the left recursion for E as 
 
E → TE’ 
 
E’ → +TE’ | ε 
 
Then eliminate for T as 
 
T → FT’ 
 
T’→ *FT’ | ε 
 
Thus the obtained grammar after eliminating left recursion is 
 
E → TE’ 
 
E’ → +TE’ | ε 
 
T → FT’ 
 
T’ → *FT’ | ε 
 
F → (E) | id 
 
Algorithm to eliminate left recursion: 
 

1. Arrange the non-terminals in some order A1, A2 . . .  An. 

2. for i := 1 to n do begin 

for j := 1 to i-1 do begin 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 

where Aj → δ1 | δ2 | . . .  | δk are all the current Aj-productions; 

end 

eliminate the immediate left recursion among the Ai-productions 

end
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Left factoring: 
 

Left factoring is a grammar transformation that is useful for producing a grammar 

suitable for predictive parsing. When it is not clear which of two alternative productions to use to 

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have 

seen enough of the input to make the right choice. 
 

If there is any production A → αβ1 | αβ2 , it can be rewritten as 
 

A → αA’ 
 
A’ → β1 | β2 
 

Consider the grammar , G : S → iEtS | iEtSeS | a 

E → b 
 

Left factored, this grammar becomes 
 
S → iEtSS’ | a 

S’ → eS | ε 

E→ b 
 

PARSING 
 

It is the process of analyzing a continuous stream of input in order to determine its 

grammatical structure with respect to a given formal grammar. 
 
Parse tree: 
 

Graphical representation of a derivation or deduction is called a parse tree. Each interior 

node of the parse tree is a non-terminal; the children of the node can be terminals or non- 

terminals. 
 
Types of parsing: 
 
1. Top down parsing 

2. Bottom up parsing 
 

➢ Top–down parsing : A parser can start with the start symbol and try to transform it to the 

input string. 

Example : LL Parsers. 

➢ Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start 

symbol. 

Example : LR Parsers. 
 

TOP-DOWN PARSING 
 

It can be viewed as an attempt to find a left-most derivation for an input string or an 

attempt to construct a parse tree for the input starting from the root to the leaves.
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Types of top-down parsing : 
 
1. Recursive descent parsing 

2. Predictive parsing 
 
1. RECURSIVE DESCENT PARSING 
 

• Recursive descent parsing is one of the top-down parsing techniques that uses a set of 

recursive procedures to scan its input. 
 

• This parsing method may involve backtracking, that is, making repeated scans of the 

input. 
 

Example for backtracking : 
 
Consider the grammar G : S → cAd 

A → ab | a 

and the input string w=cad. 
 
The parse tree can be constructed using the following top-down approach : 
 
Step1: 
 
Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first symbol 

of w. Expand the tree with the production of S. 
 

S 
 
 

c A d 
 

Step2: 
 
The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second 

symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative. 
 

S 
 
 
 

c A d 
 
 
 

a b 
 

Step3: 
 
The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer 

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input 

symbol d.
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Hence discard the chosen production and reset the pointer to second position. This is called 

backtracking. 
 
Step4: 
 
Now try the second alternative for A. 
 

S 
 
 
 

c A d 
 
 
 

a 
 

Now we can halt and announce the successful completion of parsing. 
 
 
 
2. PREDICTIVE PARSING 
 

• Predictive parsing is a special case of recursive descent parsing where no backtracking is 

required. 
 

• The key problem of predictive parsing is to determine the production to be applied for a 

non-terminal in case of alternatives. 
 

Non-recursive predictive parser 
 
 
 
 
 
 

 

INPUT a + b $ 
 
 

 
STACK X Predictive parsing program  

OUTPUT 
 

Y 
 
Z 
 
$ 

Parsing Table M 
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The table-driven predictive parser has an input buffer, stack, a parsing table and an output 

stream. 
 
Input buffer: 
 
It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
 
Stack: 
 
It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 

Initially, the stack contains the start symbol on top of $. 
 
Parsing table: 
 
It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal. 
 
Predictive parsing program: 
 
The parser is controlled by a program that considers X, the symbol on top of stack, and a, the 

current input symbol. These two symbols determine the parser action. There are three 

possibilities: 
 

1. If X = a = $, the parser halts and announces successful completion of parsing. 

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next 

input symbol. 

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This 

entry will either be an X-production of the grammar or an error entry. 

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by WVU. 

If M[X, a] = error, the parser calls an error recovery routine. 
 
 

Algorithm for nonrecursive predictive parsing: 
 
Input : A string w and a parsing table M for grammar G. 
 
Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 
 
Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in 

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for 

the input is as follows: 
 

set ip to point to the first symbol of w$; 

repeat 

let X be the top stack symbol and a the symbol pointed to by ip; 

if X is a terminal or $ then 

if X = a then 

pop X from the stack and advance ip 

else error() 

else /* X is a non-terminal */ 

if M[X, a] = X →Y1Y2 … Yk then begin
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pop X from the stack; 

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 

output the production X → Y1 Y2 . . .  Yk 

end 

else error() 

until X = $ /* stack is empty */ 
 

Predictive parsing table construction: 
 
The construction of a predictive parser is aided by two functions associated with a grammar G : 
 
1. FIRST 
 
2. FOLLOW 
 
Rules for first( ): 
 
1. If X is terminal, then FIRST(X) is {X}. 
 
2. If X → ε is a production, then add ε to FIRST(X). 
 
3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 
 
4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some 

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is 

in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X). 
 

Rules for follow( ): 

1. If S is a start symbol, then FOLLOW(S) contains $. 

 

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in 

follow(B). 
 

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 

everything in FOLLOW(A) is in FOLLOW(B). 
 

Algorithm for construction of predictive parsing table: 
 
Input : Grammar G 
 
Output : Parsing table M 
 
Method : 
 
1. For each production A → α of the grammar, do steps 2 and 3. 
 
2. For each terminal a in FIRST(α), add A → α to M[A, a]. 
 
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $]. 
 

4. Make each undefined entry of M be error.
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Example: 
 
Consider the following grammar : 
 
E → E+T | T 

T → T*F | F 

F → (E) | id 
 
After eliminating left-recursion the grammar is 
 
E → TE’ 

E’ → +TE’ | ε 

T → FT’ 

T’ → *FT’ | ε 

F → (E) | id 
 
First( ) : 
 
FIRST(E) = { ( , id} 
 
FIRST(E’) ={+ , ε } 
 
FIRST(T) = { ( , id} 
 
FIRST(T’) = {*, ε } 
 
FIRST(F) = { ( , id } 
 
Follow( ): 
 
FOLLOW(E) = { $, ) } 
 
FOLLOW(E’) = { $, ) } 
 
FOLLOW(T) = { +, $, ) } 
 
FOLLOW(T’) = { +, $, ) } 
 
FOLLOW(F) = {+, * , $ , ) } 
 
 
 

Predictive parsing table :

NON- 
TERMINAL 

id + * ( ) $ 

E E → TE’   E → TE’   

E’  E’ → +TE’   E’ → ε E’→ ε 

T T → FT’   T → FT’   

T’  T’→ ε T’→ *FT’  T’ → ε T’ → ε 

F F → id   F → (E)   
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Stack implementation: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
LL(1) grammar: 
 

The parsing table entries are single entries. So each location has not more than one entry. This 

type of grammar is called LL(1) grammar. 
 
Consider this following grammar: 
 
S → iEtS | iEtSeS | a 

E→b 
 
After eliminating left factoring, we have 
 
S → iEtSS’ | a 

S’→ eS | ε 

E→b 
 
To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals. 
 
FIRST(S) = { i, a } 
 
FIRST(S’) = {e, ε } 
 
FIRST(E) = { b} 
 
FOLLOW(S) = { $ ,e } 

stack Input Output 

$E id+id*id $  

$E’T id+id*id $ E → TE’ 

$E’T’F id+id*id $ T → FT’ 

$E’T’id id+id*id $ F → id 

$E’T’ +id*id $  

$E’ +id*id $ T’ → ε 

$E’T+ +id*id $ E’ → +TE’ 

$E’T id*id $  

$E’T’F id*id $ T → FT’ 

$E’T’id id*id $ F → id 

$E’T’ *id $  

$E’T’F* *id $ T’ → *FT’ 

$E’T’F id $  

$E’T’id id $ F → id 

$E’T’ $  

$E’ $ T’ → ε 

$ $ E’ → ε 
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FOLLOW(S’) = { $ ,e } 
 
FOLLOW(E) = {t} 
 
Parsing table: 
 

 
Since there are more than one production, the grammar is not LL(1) grammar. 
 

Actions performed in predictive parsing: 
 

1. Shift 

2. Reduce 

3. Accept 

4. Error 
 

Implementation of predictive parser: 
 

1. Elimination of left recursion, left factoring and ambiguous grammar. 

2. Construct FIRST() and FOLLOW() for all non-terminals. 

3. Construct predictive parsing table. 

4. Parse the given input string using stack and parsing table. 
 
 

BOTTOM-UP PARSING 
 
Constructing a parse tree for an input string beginning at the leaves and going towards the root is 

called bottom-up parsing. 
 
A general type of bottom-up parser is a shift-reduce parser. 
 
SHIFT-REDUCE PARSING 

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree 

for an input string beginning at the leaves (the bottom) and working up towards the root (the 

top). 
 

Example: 

Consider the grammar: 

S → aABe 

A → Abc | b 

B→ d 

The sentence to be recognized is abbcde. 

NON- 
TERMINAL 

a b e i t $ 

S S→a   S → iEtSS’   

S’   S’ → eS 

S’ → ε 

  S’ → ε 

E  E→b     
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(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n   right- 

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION 
 

abbcde (A → b) S → aABe 

aAbcde (A → Abc) → aAde 

aAde (B → d) → aAbcde 

aABe (S → aABe) → abbcde 

S 

The reductions trace out the right-most derivation in reverse. 
 

Handles: 
 

A handle of a string is a substring that matches the right side of a production, and whose 

reduction to the non-terminal on the left side of the production represents one step along the 

reverse of a rightmost derivation. 
 
Example: 
 
Consider the grammar: 
 
E → E+E 

E → E*E 

E → (E) 

E → id 
 

And the input string id1+id2*id3 
 
The rightmost derivation is : 
 
E → E+E 

→ E+E*E 

→ E+E*id3 

→ E+id2*id3 

→ id1+id2*id3 
 

In the above derivation the underlined substrings are called handles. 
 
Handle pruning:  
 

A rightmost derivation in reverse can be obtained by “handle pruning”. 
th 
 

sentinel form of some rightmost derivation.
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1. 

2. 

Stack implementation of shift-reduce parsing : 

 
 
 
 
 
 

Actions in shift-reduce parser:  

• shift – The next input symbol is shifted onto the top of the stack. 

• reduce – The parser replaces the handle within a stack with a non-terminal. 

• accept – The parser announces successful completion of parsing. 

• error – The parser discovers that a syntax error has occurred and calls an error recovery 

routine. 
 

Conflicts in shift-reduce parsing: 
 

There are two conflicts that occur in shift shift-reduce parsing: 
 

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce. 
 
2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make. 
 
1. Shift-reduce conflict: 
 
 

 

 

 

Stack Input Action 

$ id1+id2*id3 $ shift 

$ id1 +id2*id3 $ reduce by E→id 

$E +id2*id3 $ shift 

$ E+ id2*id3 $ shift 

$ E+id2 *id3 $ reduce by E→id 

$ E+E *id3 $ shift 

$ E+E* id3 $ shift 

$ E+E*id3 $ reduce by E→id 

$ E+E*E $ reduce by E→ E *E 

$ E+E $ reduce by E→ E+E 

$E  $ accept 
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Example: 
 
Consider the grammar: 
 
E→E+E | E*E | id and input id+id*id 

 



 

2. Reduce-reduce conflict: 
 
Consider the grammar: 

M → R+R | R+c | R 

R→c 
 

and input c+c

Stack Input Action Stack Input Action 

$ c+c $ Shift $ c+c $ Shift 

$c +c $ Reduce by 

R→c 

$c +c $ Reduce by 

R→c 

$R  +c $ Shift $R  +c $ Shift 

$ R+ c$  Shift $ R+ c$  Shift 

$ R+c $ Reduce by 

R→c 

$ R+c $ Reduce by 

M→R+c 

$ R+R $ Reduce by 

M→R+R 

$M  $  

$M  $     

Stack Input Action Stack Input Action 

$ E+E *id $ Reduce by 

E→E+E 

$E+E *id $ Shift 

$E *id $ Shift $E+E* id $ Shift 

$ E* id $ Shift $E+E*id $ Reduce by 

E→id 

$ E*id $ Reduce by 

E→id 

$E+E*E $ Reduce by 

E→E*E 

$ E*E $ Reduce by 

E→E*E 

$E+E $ Reduce by 

E→E*E 

$E   $E   
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Viable prefixes: 

➢ α is a viable prefix of the grammar if there is w such that αw is a right sentinel form. 

➢ The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser 

are called viable prefixes. 

➢ The set of viable prefixes is a regular language. 
 

LR PARSERS 

An efficient bottom-up syntax analysis technique that can be used to parse a large class of 

CFG is called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for 

constructing a rightmost derivation in reverse, and the ‘k’ for the number of input symbols. 

When ‘k’ is omitted, it is assumed to be 1. 
 

Advantages of LR parsing: 

✓ It recognizes virtually all programming language constructs for which CFG can be 

written. 

✓ It is an efficient non-backtracking shift-reduce parsing method. 

✓ A grammar that can be parsed using LR method is a proper superset of a grammar that 

can be parsed with predictive parser. 

✓ It detects a syntactic error as soon as possible. 
 

Drawbacks of LR method: 

It is too much of work to construct a LR parser by hand for a programming language 

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC. 
 

Types of LR parsing method: 

1. SLR- Simple LR 

▪ Easiest to implement, least powerful. 

2. CLR- Canonical LR 

▪ Most powerful, most expensive. 

3. LALR- Look-Ahead LR 

▪ Intermediate in size and cost between the other two methods. 
 

The LR parsing algorithm: 
 
The schematic form of an LR parser is as follows: 
 

INPUT a1    … ai  …    an    $ 
 

 
Sm 

Xm 

Sm-1 

Xm-1 

… 

S0 
 
 

STACK 

LR parsing program 
 
 
 
 
 

action    goto 
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It consists of : an input, an output, a stack, a driver program, and a parsing table that has two 

parts (action and goto). 
 
➢ The driver program is the same for all LR parser. 
 
➢ The parsing program reads characters from an input buffer one at a time. 
 
➢ The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on 

top. Each Xi is a grammar symbol and each si is a state. 
 

➢ The parsing table consists of two parts : action and goto functions. 
 
Action : The parsing program determines sm, the state currently on top of stack, and ai, the 

current input symbol. It then consults action[sm,ai] in the action table which can have one of four 

values : 
 
1. shift s, where s is a state, 

2. reduce by a grammar production A → β, 

3. accept, and 

4. error. 
 
Goto : The function goto takes a state and grammar symbol as arguments and produces a state. 
 
LR Parsing algorithm: 
 
Input: An input string w and an LR parsing table with functions action and goto for grammar G. 
 
Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication. 
 
Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input 

buffer. The parser then executes the following program : 
 

set ip to point to the first input symbol of w$; 

repeat forever begin 
let s be the state on top of the stack and 

a the symbol pointed to by ip; 
if action[s, a] = shift s’ then begin 

push a then s’ on top of the stack; 

advance ip to the next input symbol 

end 

else if action[s, a] = reduce A→β then begin 
pop 2* | β | symbols off the stack; 
let s’ be the state now on top of the stack; 
push A then goto[s’, A] on top of the stack; 
output the production A→ β 

end 
else if action[s, a] = accept then 

return 
else error( ) 

end
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CONSTRUCTING SLR(1) PARSING TABLE: 
 
To perform SLR parsing, take grammar as input and do the following: 

1. Find LR(0) items. 

2. Completing the closure. 

3. Compute goto(I,X), where, I is set of items and X is grammar symbol. 
 
LR(0) items: 

An LR(0) item of a grammar G is a production of G with a dot at some position of the 

right side. For example, production A → XYZ yields the four items : 
 
A → . XYZ 

A → X . YZ 

A → XY . Z 

A → XYZ . 
 
Closure operation: 

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I 

by the two rules: 
 
1. Initially, every item in I is added to closure(I). 

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it 

is not already there. We apply this rule until no more new items can be added to closure(I). 
 

Goto operation: 

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such that 

[A→ α . Xβ] is in I. 
 
Steps to construct SLR parsing table for grammar G are: 
 

1. Augment G and produce G’ 

2. Construct the canonical collection of set of items C for G’ 

3. Construct the parsing action function action and goto using the following algorithm that 

requires FOLLOW(A) for each non-terminal of grammar. 
 

Algorithm for construction of SLR parsing table: 
 

Input : An augmented grammar G’ 

Output : The SLR parsing table functions action and goto for G’ 

Method : 

1. Construct C = {I0, I1, …. In}, the collection of sets of LR(0) items for G’. 

2. State i is constructed from Ii.. The parsing functions for state i are determined as follows: 

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be 

terminal. 

(b) If [A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A). 

(c) If [S’→S.] is in Ii, then set action[i,$] to “accept”. 
 

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).
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3. The goto transitions for state i are constructed for all non-terminals A using the rule: 

If goto(Ii,A) = Ij, then goto[i,A] = j. 

4. All entries not defined by rules (2) and (3) are made “error” 

5. The initial state of the parser is the one constructed from the set of items containing 

[S’→.S]. 
 

Example for SLR parsing: 

Construct SLR parsing for the following grammar : 

G : E→ E + T | T 

T→ T * F | F 

F → (E) | id 
 

The given grammar is : 

G : E→ E + T ------ (1) 

E →T ------ (2) 

T→ T * F ------ (3) 

T→ F ------ (4) 

F → (E) ------ (5) 

F → id ------ (6) 
 

Step 1 : Convert given grammar into augmented grammar. 

Augmented grammar : 

E’ → E 

E → E+T 

E → T 

T → T*F 

T→ F 

F → (E) 

F → id 
 

Step 2 : Find LR (0) items. 
 

I0 : E’ → . E 

E → . E+T 

E → . T 

T → . T*F 

T → . F 

F → . (E) 

F → . id 
 
 

GOTO ( I0 , E) GOTO ( I4 , id ) 

I1 : E’ → E . I5 : F → id . 

E → E . +T
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GOTO ( I6 , T ) 

GOTO ( I0 , T) I9 : E → E + T . 

I2 : E → T . T→ T . * F 

T → T . *F  

GOTO ( I6 , F ) 

GOTO ( I0 , F) I3 : T → F . 

I3 : T → F . 

GOTO ( I6 , ( ) 

I4 : F → ( . E ) 
 

GOTO ( I0 , ( ) GOTO ( I6 , id) 

I4 : F → ( . E) I5 : F → id . 

E → . E+T 

E → . T GOTO ( I7 , F ) 

T → . T*F I10 : T → T * F . 

T → . F 

F → . (E) GOTO ( I7 , ( ) 

F → . id I4 : F → ( . E ) 

E → . E+T 

GOTO ( I0 , id ) E → . T 

I5 : F → id . T → . T*F 

T → . F 

GOTO ( I1 , + ) F → . (E) 

I6 : E → E + . T F → . id 

T → . T*F 

T → . F GOTO ( I7 , id ) 

F → . (E) I5 : F → id . 

F → . id 

GOTO ( I8 , ) ) 

GOTO ( I2 , * ) I11 : F → ( E ) . 

I7 : T → T * . F 

F → . (E) GOTO ( I8 , + ) 

F → . id I6 : E → E + . T 

T→ . T * F 

GOTO ( I4 , E ) T→ . F 

I8 : F → ( E . ) F→ . ( E ) 

E→ E . + T F → . id 
 

GOTO ( I4 , T) GOTO ( I9 , *) 

I2 : E →T . I7 : T → T * . F 

T→ T . * F F→ . ( E ) 

F → . id 

GOTO ( I4 , F) 

I3 : T → F .
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GOTO ( I4 , ( ) 

I4 : F → ( . E) 

E → . E+T 

E → . T 

T → . T*F 

T → . F 

F → . (E) 

F → id 
 
 
 

FOLLOW (E) = { $ , ) , +) 

FOLLOW (T) = { $ , + , ) , * } 

FOOLOW (F) = { * , + , ) , $ } 
 
SLR parsing table: 

 
 
Blank entries are error entries. 
 

Stack implementation: 
 
Check whether the input id + id * id is valid or not. 

 

 ACTION GOTO 

id + * ( ) $ E T F 

I0 s5   s4   1 2 3 

I1  s6    ACC    

I2  r2 s7  r2 r2    

I3  r4 r4  r4 r4    

I4 s5   s4   8 2 3 

I5  r6 r6  r6 r6    

I6 s5   s4    9 3 

I7 s5   s4     10 

I8  s6   s11     

I9  r1 s7  r1 r1    

I10  r3 r3  r3 r3    

I11  r5 r5  r5 r5    
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STACK INPUT ACTION 

0 id + id * id $ GOTO ( I0 , id ) = s5 ; shift 

0 id 5 + id * id $ GOTO ( I5 , + ) = r6 ; reduce by F→id 

0F3 + id * id $ GOTO ( I0 , F ) = 3 

GOTO ( I3 , + ) = r4 ; reduce by T → F 

0T2 + id * id $ GOTO ( I0 , T ) = 2 

GOTO ( I2 , + ) = r2 ; reduce by E → T 

0E1 + id * id $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , + ) = s6 ; shift 

0E1+6 id * id $ GOTO ( I6 , id ) = s5 ; shift 

0 E 1 + 6 id 5 * id $ GOTO ( I5 , * ) = r6 ; reduce by F → id 

0E1+6F3 * id $ GOTO ( I6 , F ) = 3 

GOTO ( I3 , * ) = r4 ; reduce by T → F 

0E1+6T9 * id $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , * ) = s7 ; shift 

0E1+6T9*7 id $ GOTO ( I7 , id ) = s5 ; shift 

0 E 1 + 6 T 9 * 7 id 5 $ GOTO ( I5 , $ ) = r6 ; reduce by F → id 

0 E 1 + 6 T 9 * 7 F 10 $ GOTO ( I7 , F ) = 10 

GOTO ( I10 , $ ) = r3 ; reduce by T → T * F 

0E1+6T9 $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , $ ) = r1 ; reduce by E → E + T 

0E1 $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , $ ) = accept 
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