
DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

Lecture Notes

Course: Computer Organization
Course Code:3CCI01
Faculty: Prof. Kavitha M

SIDDAGANGA INSTITUTE OF TECHNOLOGY

 TUMKUR-3
An Autonomous Institution, Affiliated to VTU, Belagavi & Recognised by AICTE

and Accredited by NBA, New Delhi

Computer Organization

It describes the design and function of various units of digital computer that stores & processes information.

It also deals with the units of the computer that receives the information from external sources & sends

computed results to external destinations.

Computer : Is a fast electronic calculating machine that accepts digitized input

information , processes it according to the list of internally stored instructions &

produces the resulting output information. The list of internally stored instructions is

called as a Computer program & internal storage is called as Computer memory.

Computers are usually classified based on the size, cost , computational power & intended use. They are :

• Personal computer (Desktop)

• Workstations

• Mainframe computer

• Supercomputer.

The most common type of computer is personal computer. These computers are used in homes ,schools &

business offices.

Workstations have significantly more computational power than personal computers. These are used in

engineering applications such as interactive design work.

Mainframe computers are very large & powerful computer systems. They are used for business data

processing in medium to large corporations that require much more computing power & storage capacity

than workstations.

Supercomputers are used for large scale numerical calculations required in the applications such as weather

forecasting & aircraft design & simulation.

Functional units :

A computer consists of five functionally independent parts : Input, output , ALU , memory & control unit.

They are depicted below .

 Basic functional of a computer units

The i/p unit accepts coded information from i/p devices such as keyboards or from other computers .

required information is stored in the computer memory for later reference or immediately used by ALU to

perform the desired operation. The processing steps are determined by a program stored in the memory.

Finally the results are sent back to outside world through o/p unit. All these operations are coordinated by

the control unit.

The information handled by a computer may be either instruction or data.

Instructions are the explicit commands that govern the transfer of information with in a computer as well as

b/w the computer & its I/O devices. They also specify the arithmetic & logic operations to be performed. The

list of instructions is called as the program & is stored in the memory. The processor fetches the instructions

from the memory one by one & performs the desired operations. The computer is completely controlled by

the stored program except for the external interruption.

Data are the numbers & encoded characters that are used as operands by the instruction.

Information handled by the computer must be encoded in a suitable format. Each number, character or

instruction is encoded as a string of binary digits called as bits, each having one of two possible values 0 or 1.

alpha numeric characters are also expressed in the form binary codes.

I/O Processor

Output

Memory

Input
and

Arithmetic

Logic unit

unoit

Control unit

Two commonly used codes are :

• ASCII(American Standard ode for Information Interchange)

• EBCDIC(Extended Binary Coded Decimal Interchange Code)

INPUT UNIT :

Computer accepts information through i/p devices like keyboard, joysticks, trackballs & mouse.

Whenever a key is pressed, the corresponding letter or digit is automatically translated in to corresponding

binary code& transmitted over a cable to either the memory or the processor.

MEMORY UNIT :

The function of the memory unit is to store programs and data. There are two classes of storage, called

primary and secondary.

Primary storage is a fast memory that operates at electronic speeds. Programs must be stored in the

memory while they are being executed. The memory contains a large number of semiconductor storage

cells, each capable of storing one bit of information. These cells are rarely read or written as individual cells

but instead are processed in groups of fixed size called words. The memory is organized so that the contents

of one word, containing n bits, can be stored or retrieved in one basic operation.

To provide easy access to any word in the memory, a distinct address is associated with each word location.

Addresses are numbers that identify successive locations. A given word is accessed by specifying its

address and issuing a control command that starts the storage or retrieval process.

The number of bits in each word is often referred to as the word length of the computer. Typical word

lengths range from 16 to 64 bits.

Programs must reside in the memory during execution. Instructions and data can be written into the

memory or read out under the control of the processor.

Memory in which any location can be reached in a short and fixed amount of time after specifying its

address is called random-access memory (RAM).

The time required to access one word is called the memory access time. This time is fixed, independent of

the location of the word being accessed

ARITHMETIC & LOGIC UNIT

Most computer operations are executed in the arithmetic and logic unit (ALU) of the processor. Consider a

typical example: Suppose two numbers located in the memory are to be added. They are brought into the

processor, and the actual addition is carried out by the ALU. The sum may then be stored in the memory or

retained in the processor for immediate use. Any other arithmetic or logic operation, for example,

multiplication, division, or comparison of numbers, is initiated by bringing the required operands into the

processor, where the operation is performed by the ALU. When operands are brought into the processor,

they are stored in high-speed storage elements called registers.

Each register can store one word of data. Access times to registers are somewhat faster than access times

to the fastest cache unit in the memory hierarchy.

OUTPUT UNIT

The output unit is the counterpart of the input unit. Its function is to send processed results to the outside

world. Ex: Monitor, printers etc.

CONTROL UNIT

The memory, arithmetic and logic, and input and output units store and process information and perform

input and output operations. The operation of these units is coordinated by control unit. The control unit is

effectively the nerve center that sends control signals to other units and senses their states.

Timing signals that govern the I/O transfers are generated by the control circuits. Timing signals are signals

that determine when a given action is to take place. Data transfers between the processor and the memory

are also controlled by the control unit through timing signals.

BASIC OPERATIONAL CONCEPTS

The activity in a computer is governed by instructions. To perform a given task, an appropriate

program consisting of a list of instructions is stored in the memory. Individual instructions are brought

from the memory into the processor, which executes the specified operations. Data to be used as

operands are also stored in the memory. Consider the instruction

Add LOCA, RO

This instruction adds the operand at memory location LOCA to the operand in a register in the

processor, RO, and places the sum into register RO. The original contents of location LOCA are

preserved, whereas those of RO are overwritten. This instruction requires the performance of several

steps. First, the instruction is fetched from the memory into the processor. Next, the operand at LOCA

is fetched and added to the contents of RO. Finally, the resulting sum is stored in register RO.

Transfers between the memory and the processor are started by sending the address of the memory

location to be accessed to the memory unit and issuing the appropriate control signals. The data are

then transferred to or from the memory.

The above fig. shows how the memory and the processor are connected.

In addition to the ALU and the control circuitry, the processor contains a number of registers used for

several different purposes.

The instruction register (IR) holds the instruction that is currently being executed. Its output is

available to the control circuits, which generate the timing signals that control the various processing

elements involved in executing the instruction.

The program counter (PC) is another specialized register, which keeps track of the execution of a

program. It contains the memory address of the next instruction to be fetched and executed. During

the execution of an instruction, the contents of the PC are updated to correspond to the address of the

next instruction to be executed. The PC always points to the next instruction that is to be fetched from

the memory.

In addition to IR and PC, Processor also contains n general-purpose registers, Ro through Rn-l.

Finally, two registers facilitate communication with the memory. These are the memory address register

(MAR) and the memory data register (MDR). The MAR holds the address of the location to be accessed. The

MDR contains the data to be written into or read out of the addressed location.

The following are steps involved in executing a program.

• Execution of the program starts when the PC is set to point to the first instruction of the program.

• The contents of the PC are transferred to the MAR and a Read control signal is sent to the

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

memory.

• After the time required to access the memory elapses, the addressed word is read out of the

memory and loaded into the MDR.

• The contents of the MDR are transferred to the IR. Now the instruction is ready for decoding and

execution.

• If the instruction involves an operation to be performed by the ALU, it is necessary to obtain the

required operands. If an operand resides in the memory, it has to be fetched by sending its

address to the MAR and initiating a Read cycle.

• When the operand has been read from the memory into the MDR, it is transferred from the MDR

to the ALU. After one or more operands are fetched in this way, the ALU can perform the desired

operation.

• If the result of this operation is to be stored in the memory, then the result is sent to the MDR. The

address of the location where the result is to be stored is sent to the MAR, and a Write cycle is

initiated.

• At some point during the execution of the current instruction, the contents of the PC are

incremented so that the PC points to the next instruction to be executed. Thus, as soon as the

execution of the current instruction is completed, a new instruction fetch may be started.

BUS STRUCTURES

To form an operational system, the functional units of the computer must be connected in some organized

way

To achieve a reasonable speed of operation, a computer must be organized so that all its units can handle

one full word of data at a given time. When a word of data is transferred between units, all its bits are

transferred in parallel, that is, the bits are transferred simultaneously over many wires, or lines, one bit per

line. A group of lines that serves as a connecting path for several devices is called a bus.

 In addition to the lines that carry the data, the bus must have lines for address and control information.

The simplest way to interconnect functional units is to use a Single bus, as shown below.

All units are connected to the same bus. Since the bus can be used for only one transfer at a time, only two

units can actively use the bus at any given time.

INPUT OUTPUT MEMORY PROCESSOR

 Advantages :

• Low cost

• Flexibility to attach peripheral devices.

Systems that contain multiple buses achieve more concurrency in operations by allowing two or more

transfers to be carried out at the same time. This leads to better performance but at an increased cost.

The devices connected to a bus vary widely in their speed of operation. Some

electromechanical devices, such as keyboards and printers, are relatively slow.

Others, like magnetic or optical disks, are considerably faster. Memory and

processor units operate at electronic speeds, making them the fastest parts of a

computer. Because all these devices must communicate with each other over a

bus, an efficient transfer mechanism is required to smooth out the differences in

timing among processors, memories, and external devices.

A common approach is to include buffer registers with the devices to hold the information during

transfers. Consider the task of printing a file, The processor sends the contents of the file over the bus to

the printer buffer. Since the buffer is an electronic register, this transfer requires relatively little time. Once

the buffer is loaded, the printer can start printing without further intervention by the processor. The bus

and the processor are no longer needed and can be used for other activities. The printer continues print

and is not available for further transfers until this process is completed. Thus, buffer registers smooth out

timing differences among processors, memories, and I/O devices. They prevent a high-speed

processor from being locked to a slow I/O device during a sequence of data transfers.

 PERFORMANCE The most important measure of the performance of a computer is

how quickly it can execute programs. The speed with which a computer executes

programs is affected by :

1. the design of its hardware

2. its machine language instructions.

3. performance is also affected by the compiler that translates programs into machine language.

For best performance, it is necessary to design the compiler, the machine instruction set, and the hardware

in a coordinated way.

PROCESSOR CLOCK

Processor circuits are controlled by a timing signal called a clock. The clock defines regular time intervals,

called clock cycles. To execute a machine instruction, the processor divides the action to be performed into a

sequence of basic steps, such that each step can be completed in one clock cycle.

The length P of one clock cycle is an important parameter that affects processor performance. Its inverse is

the clock rate,

R = 1/ P,

 which is measured in cycles per second.

BASIC PERFORMANCE EQUATION

Let T be the processor time required to execute a program that has been prepared in some high-level

language. The compiler generates a machine language object program that corresponds to the source

program. Assume that complete execution of the program requires the execution of N machine language

instructions. The number N is the actual number of instruction executions, and is not necessarily equal to

the number of machine instructions in the object program. Some instructions may be executed more

than once, which is the case for instructions inside a program loop. Others may not be executed at all,

depending on the input data used. Suppose that the average number of basic steps needed to execute

one machine instruction is S, where each basic step is completed in one clock cycle. If the clock rate is R

cycles per second, the program execution time is given by

T=(N*S)/R

This is often referred to as the basic performance equation.

To achieve high performance, the computer designer must seek ways to reduce the value of T, which

means reducing N and S, and increasing R. The value of N is reduced if the source program is compiled into

fewer machine instructions. The value of S is reduced if instructions have a smaller number of basic steps to

perform or if the execution of instructions is overlapped. Using a higher-frequency clock increases the value

or R, which means that the time required to complete a basic execution step is reduced.

There are two possibilities for increasing the clock rate, R.

 First, improving the integrated-circuit (IC) technology makes logic circuits faster, which reduces the time

needed to complete a basic step. This allows the clock period, P, to be reduced and the clock rate, R, to be

increased. Second, reducing the amount of processing done in one basic step also makes it possible to

reduce the clock period, P. However, if the actions that have to be performed by an instruction remain the

same; the number of basic steps needed may increase.

 PIPEILINING AND SUPFRSCAI.AR OPERATION A substantial improvement in performance can be

achieved by over- lapping the execution of successive instructions, using a technique called pipelining. The

instruction execution consists of 4 different phases.

• Fetch phase

• Decode phase

• Execute phase

• Result phase

These phases are overlapped in pipelining.

SUPER SCALAR OPERATION

 A higher degree of concurrency can be achieved if multiple instruction pipelines are implemented in the

processor. It means that multiple functional units are used. Super scalar operation means creating parallel

paths through which different instructions can be executed in parallel. With such an arrangement, it

becomes possible to start the execution of several instructions in every clock cycle. This mode of operation

is called super scalar execution

 INSTRUCTION SET: CISC AND RISC

Reduced instruction set computing (RISC):

Simple instructions require a small number of basic steps to execute. For a processor that has only simple

instructions, a large number of instructions may be needed to perform a given programming task. This

could lead to a large value for N and a small value for S.

Complex instruction set computing (CISC) : Complex instructions involve a large number of basic

steps.If individual instructions perform more complex operations, fewer instructions will be needed, leading

to a lower value of N and a larger value of S.

Fetch Decode Execute Result

Fetch Decode Execute Result

Fetch Decode Execute Result

 PERFORMANCE MEASUREMENT

The performance of a computer is mainly affected by the execution time, T. But computing the value of T

is not simple. Moreover, parameters such as the clock speed and various architectural features are not

reliable indicators of the expected performance.

For these reasons, the computer community adopted the idea of measuring computer performance using

benchmark programs. The performance measure is the time it takes a computer to execute a given

benchmark.

A nonprofit organization called System Performance Evaluation Corporation (SPEC) selects the

benchmark programs. The programs selected range from game playing, compiler, and database

applications to numerically intensive programs in astrophysics and quantum chemistry. In each case, the

program is compiled for the computer under test, and the running time on a real computer is measured.

The same program is also compiled and run on one computer selected as a reference. The SPEC rating

is computed as follows

 Running time on the reference computer

Running time on the computer under test

Thus a SPEC rating of 50 means that the computer under test is 50 times faster than the reference

computer. The test is repeated for all the programs in the SPEC suite, and the geometric mean of the

results is computed.

where n is the number of programs in the suite.

MULTIPROCESSORS AND MUL TIOMPUTERS

Large computer systems may contain a number of processor units, in which case they are called

multiprocessor systems. These systems either execute a number of different application tasks in parallel,

or they execute subtasks of a single large task in parallel. All processors usually have access to all of the

memory in such systems, and the term shared-memory multiprocessor systems are often used to

make this clear. The high performance of these systems comes with much increased complexity and

cost. In addition to multiple processors and memory units, cost is increased because of the need for

more complex interconnection networks.

In contrast to multiprocessor systems, it is also possible to use an interconnected group of complete

computers to achieve high total computational power. The computers normally have access only to their

own memory units. When the tasks they are executing need to communicate data, they do so by

exchanging messages over a communication network. This property distinguishes them from shared-

SPEC rating =

memory multiprocessors, leading to the name message-passing multicomputers.

Generations of Computers

Generation Technology & architecture Software & applications Representative

systems

First

(1945 – 54)

Vacuum tubes & relay

memories, CPU driven by PC

& accumulator, fixed point

arithmetic

Machine / assembly

languages, single user, no

subroutine language,

programmed I/O using CPU

ENIAC

Princeton IAS

IBM 701

Second

(1955 – 64)

Discrete transistors and core

memories, floating point

arithmetic, I/O processors,

multiplexed memory access.

HLL used with compilers,

subroutine libraries, batch

processing monitor.

IBM 7090

CDC1604, Univac

LARC.

Third

(1965 – 74)

Integrated

circuits(SSI/MSI),

microprogramming,

pipelining, cache & look

ahead processors

Multiprogramming & time

sharing OS, multiuser

applications.

IBM 360/370

CDC 6600

TI-ASC

PDP-8

Fourth

(1975 - 90)

LSI/VLSI and

semiconductor memory,

multiprocessors, vector

super computers,

multicomputers

Multiprocessor OS,

languages, compiler and

environments for parallel

processing

VAX 9000

Cray X-MP

IBM 3090

BBN TC2000

Fifth

(1991-

Present)

ULSI processors, memory &

switches, high density

packaging, scalable

architectures

Massively parallel

processing, grand challenge

applications, heterogeneous

processing

Fujitsu VPP 500

Cray/MPP

TMC/CM-5

Intel

 Machine Instructions & Programs

NUMBERS:

Computers are built using logic circuits that operate on information represented by two valued electrical

signals. These signals are represented by two values as 0 and 1.The amount of information represented by

such a signal is referred as a bit of information, where bit stands for binary digit. The most natural way to

represent a number in a computer system is by a string of bits, called a binary number. A text character can

also be represented by a string of bits called a character code.

NUMBER REPRESENTATION

Consider an n-bit vector

B = b n.1 . . . b1b0

where bi = 0 or 1 for 0<= i<= n-1. This vector can represent unsigned integer values V in the range 0 to 2n

- 1, where V(B) = bn.1 * 2n.1 +.............................+b1 * 21 + b0 * 20

There is a need to represent both positive and negative numbers. Three systems are used for representing

such numbers:

• Sign-and-magnitude

• 1’s-complement

• 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers. The following fig

illustrates all three representations using 4-bit numbers. Positive values have identical representations in all

systems, but negative values have different representations. In the sign-and-magnitude system, negative

values are represented by changing the most significant bit from 0 to 1. For example, +5 is represented by

0101, and -5 is represented by 1101. In 1’s-complement representation, negative values are obtained by

complementing each bit of the corresponding positive number. Thus, the representation for -3 is obtained by

complementing each bit in the vector 0011 to yield 1100. The operation of forming the 1’s-complement of a

given number is equivalent to subtracting that number from 2n - 1, that is, from 1111 in case of 4-bit

numbers . Finally, in the 2’s-complement system, forming the 2’s-complement of a number is done by

subtracting that number from 2n.

Hence, the 2’s-complement of a number is obtained by adding 1 to the 1’s-complement of that

number.There are distinct representations for +0 and - 0 in both the sign-and magnitude and 1’s-

complement systems, but the 2’s-complement system has only one representation for 0. For 4-bit

numbers, the value -8 is representable in the 2’scomplement system but not in the other systems.

ADDITION OF POSITIVE NUMBERS

Consider adding two 1-bit numbers. The results are shown in foloowing fig. The sum of 1 and 1 requires the

2-bit vector 10 to represent the value 2. We say that the sum is 0 and the carry-out is 1.

ADDITION AND SUBTRACTION OF SIGNED NUMBERS

There are three systems for representing positive and negative numbers. These

systems differ only in the way they represent negative values. The sign-and-

magnitude system is the simplest representation, but it is also the most awkward for

addition and subtraction operations. The 1’s-complement method is somewhat

better. The 2’s-complement system is the most efficient method for performing

addition and subtraction operations.

Consider addition modulo N (written as mod N). The description of addition mod N of positive integers is

represented by a circle with the N values, 0 through N - 1, marked along its perimeter.

Consider the case N = 16. The operation (7+4) mod 16 yields the value 11. To perform this operation

graphically, locate 7 on the circle and then move 4 units in the clockwise direction to arrive at the answer 11.

Similarly, (9 + 14) mod16 = 7; this is modeled on the circle by locating 9 and moving 14 units in the

clockwise direction to arrive at the answer 7. This technique works for the computation of (a +b) mod 16 for

any positive numbers a and b, that is, to perform addition, locate a and move b units in the clockwise

direction to arrive at (a + b) mod 16.

Consider the addition of +7 to -3. The 2’s-complement representation for these numbers is 0111 and

1101,respectively. To add these numbers, locate 0111 on the circle then move 1101 (13) steps in the

clockwise direction to arrive at 0100, which yields the correct answer of +4.

If we ignore the carry-out from the fourth bit position , we obtain the correct answer.

The rules for addition and subtraction of n-bit signed numbers using the 2’s-complement representation

system are :

1. To add two numbers, add their n-bit representations, ignoring the carry-out signal from the most

significant bit (MSB) position. The sum will be the algebraically correct value in the 2’s-complement

representation as long as the answer is in the range -2n-1 through +2n-1 - 1.

2. To subtract two numbers X and Y , that is, to perform X - Y , form the 2’scomplement of Y and

then add it to X, as in rule 1. Again, the result will be the algebraically correct value in the 2’s-

complement representation system if the answer is in the range -2n-1 through +2n-1 - 1.

The simplicity of either adding or subtracting signed numbers in 2’s-complement representation is the

reason why this number representation is used in modern computers. Examples :

OVERFLOW IN INTEGER ARITHMETIC

In the 2’s-complement number representation system, n bits can represent values in the range -2n-1 to +2n-1

- 1. For 4 bit number system, the range of numbers that can be represented is -8 through +7.If the result of

an arithmetic operation is outside the representable range, then we say that arithmetic overflow has

occurred.

When adding unsigned numbers, the carry-out, cn, from the most significant bit position serves as the

overflow indicator. But this does not work for adding signed numbers. For example, when using 4-bit signed

numbers, if we try to add the numbers +7 and +4, the output sum vector, S, is 1011, which is the code for

.5, an incorrect result. The carry-out signal from the MSB position is 0. Similarly, if we try to add –4 and -6,

we get S = 0110 = +6, another incorrect result, and in this case, the carry-out signal is 1. Thus, overflow

may occur if both summands have the same sign. Clearly, the addition of numbers with different signs

cannot cause overflow. This leads to the following conclusions:

1. Overflow can occur only when adding two numbers that have the same sign.

2. The carry-out signal from the sign-bit position is not a sufficient indicator of over- flow when adding

signed numbers.

A simple way to detect overflow is to examine the signs of the two summands X and Y

and the sign of the result. When both operands X and Y have the same sign, an overflow

occurs when the sign of S is not the same as the signs of X and Y .

CHARACTERS

In addition to numbers, computers must be able to handle nonnumeric text information consisting of

characters. Characters can be letters of the alphabet, decimal digits, punctuation marks, and so on. They are

represented by codes that are usually eight bits long. One of the most widely used such codes is the

American Standards Code for Information Interchange (ASCII).

MEMORY LOCATIONS AND ADDRESSES

Information is stored in the memory. The memory consists of many millions of storage cells, each of which

can store a bit of information having the value 0 or 1. Because a single bit represents a very small amount of

information, bits are not handled individually. The usual approach is to deal with them in groups of fixed size.

For this purpose, the memory is organized so that a group of n bits can be stored or retrieved in a single,

basic operation. Each group of n bits is referred to as a word of information, and n is called the word length.

The memory of a computer can be schematically represented as a collection of words as shown in Fig.

The word length of the computer typically ranges from 16 to 64 bits. If the word length of a computer is 32

bits, a single word can store a 32-bit 2’s-complement number or four ASCII characters, each occupying 8

bits. A unit of 8 bits is called a byte. Machine instructions may require one or more words for their

representation.

Accessing the memory to store or retrieve a single item of information, either aword or a byte, requires

distinct names or addresses for each item location. It is customary to use numbers from 0 through 2k-1, for

some suitable value of k. The 2k addresses constitute the address space of the computer, and the memory

can have up to 2k addressable locations. For example, a 24-bit address generates an address space of 224

(16,777,216) locations. This number is usually written as 16M (16 mega), where 1M is the number 220

(1,048,576). A 32-bit address creates an address space of 232 or 4G (4 giga) locations, where 1G is 230.

BYTE ADDRESSABILITY

The memory consists of three basic information quantities: the bit, byte, and word.A byte is always 8 bits,

but the word length typically ranges from 16 to 64 bits. It is impractical to assign distinct addresses to

individual bit locations in the memory. The most practical assignment is to have successive addresses refer

to successive byte locations in the memory. The term byte-addressable memory is used for this assignment.

Byte locations have addresses 0, 1, 2, Thus, if the word length of the machine is 32 bits, successive

words are located at addresses 0, 4, 8, . . . , with each word consisting of four bytes.

BIG-ENDIAN AND LITTLE-ENDIAN ASSIGNMENTS

There are two ways that byte addresses can be assigned across words, as shown in Fig. The name big-

endian is used when lower byte addresses are used for the more significant bytes (the leftmost bytes) of the

word. The name little-endian is used for the opposite ordering, where the lower byte addresses are used for

the less significant bytes (the rightmost bytes) of the word. Both little-endian and big-endian assignments

are used in commercial machines. In both cases, byte addresses 0, 4, 8, . . . , are taken as the addresses of

successive words in the memory and are the addresses used when specifying memory read and write

operations for words.

WORD ALIGNMENT

If the wordlength is 32-bit, then word boundaries occur at addresses 0, 4,8, We say that the word

locations have aligned addresses. In general, words are said to be aligned in memory if they begin at a byte

address that is a multiple of the number of bytes in a word. In genaral, the number of bytes in a word is a

power of 2. Hence, if the word length is 16 (2 bytes), aligned words begin at byte addresses 0, 2, 4, . . . ,

and for a word length of 64 (23 bytes), alignedwords begin at byte addresses 0, 8, 16,There is no

fundamental reason why words cannot begin at an arbitrary byte address. In that case, words are said to

have unaligned addresses.

ACCESSING NUMBERS, CHARACTERS AND CHARACTER STRINGS

A number usually occupies one word. It can be accessed in the memory by specifying its word address.

Similarly, individual characters can be accessed by their byte address.

In some applications, it is necessary to handle character strings of variable length. The beginning of the string

is indicated by giving the address of the byte containing its first character. Successive byte locations contain

successive characters of the string. There are two ways to indicate the length of the string. A special control

character with the meaning “end of string” can be used as the last character in the string, or a separate

memory word location or processor register can contain a number indicating the length of the string in

bytes.

MEMORY OPERATIONS

Both program instructions and data operands are stored in the memory. To execute an instruction, the

processor control circuits must cause the word (or words) containing the instruction to be transferred from

the memory to the processor. Operands and results must also be moved between the memory and the

processor. Thus, two basic operations involving the memory are needed, namely, Load (or Read or Fetch)

and Store (or Write).

The Load operation transfers a copy of the contents of a specific memory location to the processor. The

memory contents remain unchanged. To start a Load operation, the processor sends the address of the

desired location to the memory and requests that its contents be read. The memory reads the data stored

at that address and sends them to the processor.

The Store operation transfers an item of information from the processor to a specific memory location,

destroying the initial contents of that location. The processor sends the address of the desired location to the

memory, together with the data to be written into that location.

INSTRUCTIONS AND INSTRUCTION SEQUENCING

The tasks carried out by a computer program consist of a sequence of small steps, such as adding two

numbers, testing for a particular condition, reading a character from the keyboard, or sending a character to

be displayed on a display screen. A computer must have instructions capable of performing four types of

operations:

• Data transfers between the memory and the processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

REGISTER TRANSFER NOTATION

To transfer the information from one location in the computer to another the following locations are involved

are

• memory locations,

• processor registers, or registers in the I/O subsystem.

The location is identified by a symbolic name.

For example,names for the addresses of memory locations may be LOC,PLACE, A,VAR2; processor register

names may be R0, R5; and I/O register names may be DATAIN, OUTSTATUS, and so on. The contents of a

location are denoted by placing square brackets around the name of the location. Thus, the expression

R1 [LOC]

means that the contents of memory location LOC are transferred into processor register R1.

consider the operation that adds the contents of registers R1 and R2, and then places their sum into register

R3. This action is indicated as

R3 [R1] + [R2]

This type of notation is known as Register Transfer Notation (RTN). The right-hand side of an RTN

expression always denotes a value, and the left-hand side is the name of a location where the value is to be

placed, overwriting the old contents of that location.

ASSEMBLY LANGUAGE NOTATION

There is another type of notation to represent machine instructions and programs. For this, we use an

assembly language format. For example, an instruction that causes the transfer from memory location LOC

to processor register R1, is specified by the statement

Move LOC,R1

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register R1

are overwritten.

The addition of two numbers contained in processor registers R1 and R2 and placing their sum in R3 can

be specified by the assembly language statement

Add R1,R2,R3

BASIC INSTRUCTION TYPES

The operation of adding two numbers is a fundamental capability in any computer. The statement

C = A + B

in a high-level language program is a command to the computer to add the current values of the two

variables called A and B, and to assign the sum to a third variable, C. When the program containing this

statement is compiled, the three variables, A, B, and C, are assigned to distinct locations in the memory. The

contents of these locations represent the values of the three variables. Hence, the above high-level language

statement requires the action

C [A] + [B]

to take place in the computer. To carry out this action, the contents of memory locations A and B are fetched

from the memory and transferred into the processor where their sum is computed. This result is then sent

back to the memory and stored in location C.

If this action is to be performed by a single machine instruction and the instruction contains the memory

addresses of the three operands—A, B, and C then three-address instruction can be represented

symbolically as

Add A,B,C

Operands A and B are called the source operands, C is called the destination operand, and Add is the

operation to be performed on the operands.

A general instruction of this type has the format

Operation Source1,Source2,Destination

If k bits are needed to specify the memory address of each operand, the encoded form of the above

instruction must contain 3k bits for addressing purposes in addition to the bits needed to denote the Add

operation. For a modern processor with a 32-bit address space, a 3-address instruction is too large to fit in

one word for a reasonable word length. Thus, a format that allows multiple words to be used for a single

instruction would be needed to represent an instruction of this type.

An alternative approach is to use a sequence of simpler instructions to perform the same task, with each

instruction having only one or two operands. The two-address instructions of the form

Operation Source, Destination

are available. An Add instruction of this type is

Add A,B

which performs the operation B [A] + [B]. When the sum is calculated, the result is sent to the

memory and stored in location B, replacing the original contents of this location. This means that operand B

is both a source and a destination.

 The problem in two address instruction is one of the operand is destroyed. The

problem can be solved by using another two address instruction that copies the

contents of one memory location into another.

Move B,C

which performs the operation C [B], leaving the contents of location B unchanged.

The operation C [A] + [B] can now be performed by the two-instruction sequence

Move B,C

Add A,C

Two-address instructions will not normally fit into one word for usual word lengths and address sizes.

Another possibility is to have machine instructions that specify only one memory operand. The second

operand is implicitly specified in the instruction. A processor register, called the accumulator, is used for this

purpose. Thus, the one-address instruction

Add A

This instruction adds the contents of memory location A to the contents of the accumulator register and

place the sum back into the accumulator.

Ex: one-address instructions

Load A and

Store A

The Load instruction copies the contents of memory location A into the accumulator, and the Store

instruction copies the contents of the accumulator into memory location A.

Now the operation C [A]+[B] can be performed by

Load A

Add B

Store C

The operand specified in the instruction may be a source or a destination, depending on the instruction. In

the Load instruction, address A specifies the source operand, and the destination location, the accumulator, is

implied. On the other hand, C denotes the destination location in the Store instruction, whereas the source,

the accumulator, is implied.

Early computers were designed around a single accumulator structure. Most modern computers have a

number of general-purpose processor registers (8 to 32). Access to data in these registers is much faster

than to data stored in memory locations because the registers are inside the processor. Because the number

of registers is relatively small, only a fewbits are needed to specify which register takes part in an operation.

For example, for 32 registers, only 5 bits are needed. This is much less than the number of bits needed to

give the address of a location in the memory. Because the use of registers allows faster processing and

results in shorter instructions, registers are used to store data temporarily in the processor during processing.

Let Ri represent a general-purpose register. The instructions

Load A,Ri

Store Ri ,A

and

Add A,Ri

are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in which register

Ri performs the function of the accumulator.The address of one operand is directly specified in the

instruction. The other operand is specified in the register Ri. i.e. one operand is in register & the other

operand is in memory location . This type of instruction is reffered as “One & half address instruction”.

When a processor has several general-purpose registers, many instructions involve only operands that are

in the registers. In fact, in many modern processors, computations can be performed directly only on data

held in processor registers. Instructions such as

Add Ri,R j

or

Add Ri,R j,Rk

are of this type. In both of these instructions, the source operands are the contents of registers Ri and Rj . In

the first instruction, Rj also serves as the destination register, whereas in the second instruction, a third

register, Rk, is used as the destination. Such instructions, where only register names are contained in the

instruction, will normally fit into one word.

It is often necessary to transfer data between different locations. This is achieved with the instruction

Move Source,Destination

which places a copy of the contents of Source into Destination.

In processors where arithmetic operations are allowed only on operands that are in processor registers, the

C = A + B task can be performed by the instruction sequence

Move A,Ri

Move B,R j

Add Ri,R j

Move R j,C

In processors where one operand may be in the memory but the other must be in a register, an instruction

sequence for the required task would be

Move A,Ri

Add B,Ri

Move Ri,C

The speed with which a given task is carried out depends on the time it takes to transfer instructions from

memory into the processor and to access the operands referenced by these instructions. Transfers that

involve the memory are much slower than transfers within the processor. Hence, a substantial increase in

speed is achieved when several operations are performed in succession on data in processor registers

without the need to copy data to or from the memory. When machine language programs are generated by

compilers from high-level languages, it is important to minimize the frequency with which data is moved

back and forth between the memory and processor registers.

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING

Consider the task C [A] + [B]. Fig shows a possible program segment for this task as it appears in the

memory of a computer. Assume that the computer allows one memory operand per instruction , has a

number of processor registers, word length is 32 bits and the memory is byte addressable. The three

instructions of the program are in successive word locations, starting at location i. Since each instruction is 4

bytes long, the second and third instructions start at addresses i + 4 and i + 8.

The processor contains a register called the program counter (PC), which holds the address of the instruction

to be executed next. To begin executing a program, the address of its first instruction (i) must be placed into

the PC. Then, the processor control circuits use the information in the PC to fetch and execute instructions,

one at a time, in the order of increasing addresses. This is called straight-line sequencing. During the

execution of each instruction, the PC is incremented by 4 to point to the next instruction.

Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch, the

instruction is fetched from the memory location whose address is in the PC. This instruction is placed in the

instruction register (IR) in the processor. At the start of the second phase, called instruction execute, the

instruction in IR is examined to determine which operation is to be performed. The specified operation is

then performed by the processor. This often involves fetching operands from the memory or from processor

registers, performing an arithmetic or logic operation, and storing the result in the destination location. At

some point during this two-phase procedure, the contents of the PC are advanced to point to the next

instruction. When the execute phase of an instruction is completed, the PC contains the address of the next

instruction, and a new instruction fetch phase can begin.

BRANCHING

Consider the task of adding a list of n numbers. The program is shown in fig.. The addresses of the memory

locations containing the n numbers are symbolically given as NUM1, NUM2, . . . , NUMn, and a separate Add

instruction is used to add each number to the contents of register R0. After all the numbers have been

added, the result is placed in memory location SUM.

Instead of using a long list of Add instructions, it is possible to place a single Add instruction in a program

loop, as shown below. The loop is a straight-line sequence of instructions executed as many times as

needed. It starts at location LOOP and ends at the instruction Branch>0. During each pass through this loop,

the address of the next list entry is determined, and that entry is fetched and added to R0.

Assume that the number of entries in the list, n, is stored in memory location N, as shown. Register R1 is

used as a counter to determine the number of times the loop is executed. Hence, the contents of location N

are loaded into register R1 at the beginning of the program. Then, within the body of the loop, the instruction

Decrement R1

reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the

result of the decrement operation is greater than zero.

Consider the branch instruction. This type of instruction loads a new value into the program counter. As a

result, the processor fetches and executes the instruction at this new address, called the branch target,

instead of the instruction at the location that follows the branch instruction in sequential address order. A

conditional branch instruction causes a branch only if a specified condition is satisfied. If the condition is not

satisfied, the PC is incremented in the normal way, and the next instruction in sequential address order is

fetched and executed.

In the program, the instruction

Branch>0 LOOP

(branch if greater than 0) is a conditional branch instruction that causes a branch to location LOOP if the

result of the immediately preceding instruction, which is the decremented value in register R1, is greater

than zero. This means that the loop is repeated as long as there are entries in the list that are yet to be

added to R0. At the end of the nth pass through the loop, the Decrement instruction produces a value of

zero, and, hence, branching does not occur. Instead, the Move instruction is fetched and executed. It moves

the final result from R0 into memory location SUM.

 CONDITION CODES

The processor keeps track of information about the results of various operations for use by subsequent

conditional branch instructions. This is accomplished by recording the required information in individual bits,

often called condition code flags. These flags are usually grouped together in a special processor register

called the condition code register or status register. Individual condition code flags are set to 1 or cleared to 0,

depending on the outcome of the operation performed.

Four commonly used flags are

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out results from the operation; otherwise,

cleared to 0

The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or zero.

The V flag indicates whether overflow has taken place. The overflow occurs when the result of an arithmetic

operation is outside the range of values that can be represented by the number of bits available for the

operands.

The C flag is set to 1 if a carry occurs from the most significant bit position during an arithmetic operation.

ADDRESSING MODES

A program operates on data that reside in the computer’s memory. These data can be organized in a variety

of ways. The names of students can be stored in a list. If wewant to associate information with each name,

for example to record telephone numbers & addresses , we may organize this information in the form of a

table. Programmers use data structures to represent the data used in computations. These include lists,

linked lists, arrays, queues, and so on.

The different ways in which the location of an operand is specified in an instruction are referred to as

addressing modes.

IMPLEMENTATION OF VARIABLES AND CONSTANTS

Variables and constants are the simplest data types found in every computer program. In assembly

language, a variable is represented by allocating a register or a memory location to hold its value.

Ex : MOVE A, Ri

The operand is specified by the name of the register or the address of the memory location where the

operand is located. The precise definitions of these two modes are:

Register mode — The operand is the contents of a processor register; the name

(address) of the register is given in the instruction.

Absolute mode — The operand is in a memory location; the address of this location

is given explicitly in the instruction. This mode is also called as Direct addressing mode

The instruction

Move A,R2

uses these two modes. Processor registers are used as temporary storage locations where the data in a

register are accessed using the Register mode.

Consider the representation of constants. Address and data constants can be represented in assembly

language using the Immediate mode.

Immediate mode — The operand is given explicitly in the instruction.

For example, the instruction

Move #200, R0

places the value 200 in register R0. Clearly, the Immediate mode(#) is only used to specify the value of a

source operand.

Constant values are used frequently in high-level language programs. For example,the statement

 A = B + 6

contains the constant 6. Assuming that A and B have been declared as variables and may be accessed

using the Absolute mode, this statement may be compiled as follows:

Move B,R1

Add #6,R1

Move R1,A

INDIRECTION AND POINTERS

In some addressing modes, the instruction does not give the operand or its address explicitly. Instead, it

provides information from which the memory address of the operand can be determined. This address as

the effective address (EA) of the operand.

Indirect mode — The effective address of the operand is the contents of a register or memory location

whose address appears in the instruction.

The indirection is denoted by placing the name of the register or the memory address given in the

instruction in parentheses .

To execute the Add instruction in Fig a, the processor uses the value B, which is in register R1, as the

effective address of the operand. It requests a read operation from the memory to read the contents of

location B. The value read is the desired operand, which the processor adds to the contents of register R0.

Indirect addressing through a memory location is also possible as shown in Fig b. In this case, the processor

first reads the contents of memory location A, then requests a second read operation using the value B as

an address to obtain the operand.

The register or memory location that contains the address of an operand is called a pointer

Consider the program for adding a list of n numbers. Indirect addressing can be used to access successive

numbers in the list, resulting in the following program .

Register R2 is used as a pointer to the numbers in the list, and the operands are accessed indirectly through

R2. The initialization section of the program loads the counter value n from memory location N into R1 and

uses the immediate addressing mode to place the address value NUM1, which is the address of the first

number in the list, into R2. Then it clears R0 to 0.

The first time through the loop, the instruction

Add (R2),R0

fetches the operand at location NUM1 and adds it to R0. The second Add instruction adds 4 to the contents

of the pointer R2, so that it will contain the address value NUM2 when the above instruction is executed in

the second pass through the loop.

INDEXING AND ARRAYS

This type of addressing mode is useful in dealing with lists and arrays.

Index mode — The effective address of the operand is generated by adding a constant value to the contents

of a register.

The register used may be either a special register provided for this purpose, or, more commonly, it may be

any one of a set of general-purpose registers in the processor. In either case, it is referred to as an index

register.

The Index mode is symbolically written as

X(Ri)

where X denotes the constant value contained in the instruction and Ri is the name of the register involved.

The effective address of the operand is given by

EA = X + [Ri]

The contents of the index register are not changed in the process of generating the effective address.

The following Fig illustrates two ways of using the Index mode. In Fig a, the index register, R1, contains the

address of a memory location, and the value X defines an offset(also called a displacement) from this

address to the location where the operand is present.

An alternative way is illustrated in Fig b. Here, the constant X corresponds to a memory address, and the

contents of the index register define the offset to the operand.

In either case, the effective address is the sum of two values; one is given explicitly in the instruction, and the

other is stored in a register.

RELATIVE ADDRESSING

The Index mode is defined by using general-purpose processor registers. A useful version of this mode is

obtained if the program counter, PC, is used instead of a general purpose register. Then, X(PC) can be used

to address a memory location that is X bytes away from the location presently pointed to by the program

counter. Since the addressed location is identified “relative” to the program counter, the name Relative mode

is associated with this type of addressing.

Relative mode — The effective address is determined by the Index mode using the program counter in

place of the general-purpose register Ri.

This mode can be used to access data operands. But, its most common use is to specify

the target address in branch instructions. An instruction such as

Branch>0 LOOP

causes program execution to go to the branch target location identified by the name LOOP if the branch

condition is satisfied. This location can be computed by specifying it as an offset from the current value of the

program counter. Since the branch target may be either before or after the branch instruction, the offset is

given as a signed number.

During the execution of an instruction, the processor increments the PC to point to the next instruction. Most

computers use this updated value in computing the effective address in the Relative mode. For example,

suppose that the Relative mode is used to generate the branch target address LOOP in the Branch

instruction of the program. Assume that the instruction starting at LOOP, is located at memory locations

1000 and branch instruction is located at 1012. so during branch instruction execution, the PC contains a

value 1016. To branch to location LOOP (1000), the offset value needed is X = -16.

ADDITIONAL MODES

The foloowing two modes are useful for accessing data items in successive locations in the memory.

Autoincrement mode — The effective address of the operand is the contents of a register specified in the

instruction. After accessing the operand, the contents of this register are automatically incremented to point

to the next item in a list.

We denote the Autoincrement mode by putting the specified register in parentheses, to show that the

contents of the register are used as the effective address, followed by a plus sign to indicate that these

contents are to be incremented after the operand isaccessed. Thus, the Autoincrement mode is written as

(Ri)+

Implicitly, the increment amount is 1 when the mode is given in this form. But in a byte addressable

memory, this mode would only be useful in accessing successive bytes of some list. To access successive

words in a byte-addressable memory with a 32-bit word length, the increment must be 4. Computers that

have the Auto increment mode automatically increment the contents of the register by a value that

corresponds to the size of the accessed operand. Thus, the increment is 1 for byte-sized operands, 2 for 16-

bit operands, and 4 for 32-bit operands. Since the size of the operand is usually specified as part of the

operation code of an instruction, it is sufficient to indicate the auto increment mode as (Ri)+.

Auto decrement mode — The contents of a register specified in the instruction are first automatically

decremented and are then used as the effective address of the operand.

We denote the Auto decrement mode by putting the specified register in parentheses, preceded by a minus

sign to indicate that the contents of the register are to be decremented before being used as the effective

address. Thus, we write

-(Ri)

In this mode, operands are accessed in descending address order.

These two modes can be used together to implement an important data structure called a stack.

ASSEMBLY LANGUAGE

Machine instructions are represented by patterns of 0s and 1s. Such patterns are awkward

to deal with when discussing or preparing programs. Therefore, we use symbolic names to represent the

patterns. So far, we have used normal words, such as Move, Add, Increment, and Branch, for the instruction

operations to represent the corresponding binary code patterns. When writing programs for a specific

computer, such words are normally replaced by acronyms called mnemonics, such as MOV, ADD, INC, and

BR.

A complete set of such symbolic names and rules for their use constitute a programming language,

generally referred to as an assembly language.

The set of rules for using the mnemonics in the specification of complete instructions and programs is called

the syntax of the language.

Programs written in an assembly language can be automatically translated into a sequence of machine

instructions by a program called an assembler.

The assembler program is one of a collection of utility programs that are a part of the system software.

When the assembler program is executed, it reads the user program, analyzes it, and then generates the

desired machine language program. The generated program consists of 0s and 1s specifying instructions

that will be executed by the computer.

The user program in its original alphanumeric text format is called a source program, and the assembled

machine language program is called an object program.

ASSEMBLER DIRECTIVES

In addition to providing a mechanism for representing instructions in a program, the assembly language

allows the programmer to specify other information needed to translate the source program into the object

program.

Suppose that the name SUM is used to represent the value 200. This fact may be conveyed to the

assembler program through a statement such as

SUM EQU 200

This statement does not denote an instruction that will be executed when the object program is run; in fact,

it will not even appear in the object program. It simply informs the assembler that the name SUM should be

replaced by the value 200 wherever it appears in the program. Such statements are 0 called as assembler

directives (or commands).

BASIC INPUT/OUTPUT OPERATIONS

Consider a task that reads in character input from a keyboard and produces character output on a display

screen. A simple way of performing such I/O tasks is to use a method known as program-controlled I/O.

The rate of data transfer from the keyboard to a computer is limited by the typing speed of the user. The rate

of output transfers from the computer to the display is much higher. It is determined by the rate at which

characters can be transmitted over the link between the computer and the display device, typically several

thousand characters per second. However, this is still much slower than the speed of a processor that can

execute many millions of instructions per second. The difference in speed between the processor and I/O

devices creates the need for mechanisms to synchronize the transfer of data between them.

A solution to this problem is as follows: On output, the processor sends the first character and then waits for

a signal from the display that the character has been received. It then sends the second character, and so

on.

 Input is sent from the keyboard in a similar way; the processor waits for a signal indicating that a character

key has been struck and that its code is available in some buffer register associated with the keyboard. Then

the processor proceeds to read that code.

The keyboard and the display are separate devices as shown in Figure 2.19.

The action of striking a key on the keyboard does not automatically cause the corresponding character to be

displayed on the screen. One block of instructions in the I/O program transfers the character into the

processor, and another associated block of instructions causes the character to be displayed.

Consider the problem of moving a character code from the keyboard to the processor. Striking a key stores

the corresponding character code in an 8-bit buffer register associated with the keyboard. Let us call this

register DATAIN register. To inform the processor that a valid character is in DATAIN, a status control flag,

SIN, is set to 1. A program monitors SIN, and when SIN is set to 1, the processor reads the contents of

DATAIN. When the character is transferred to the processor, SIN is automatically cleared to 0. If a second

character is entered at the keyboard, SIN is again set to 1 and the process repeats.

An analogous process takes place when characters are transferred from the processor to the display.Abuffer

register,DATAOUT, and a status control flag,SOUT, are used for this transfer. When SOUT equals 1, the

display is ready to receive a character. Under program control, the processor monitors SOUT, and when

SOUT is set to 1, the processor transfers a character code to DATAOUT. The transfer of a character to

DATAOUT clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again

set to 1. The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry

commonly known as a device interface.

In order to perform I/O transfers, we need machine instructions that can check the state of the status flags

and transfer data between the processor and the I/O device. These instructions are similar in format to those

used for moving data between the processor and the memory. For example, the processor can monitor the

keyboard status flag SIN and transfer a character from DATAIN to register R1 by the following sequence of

operations:

READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

The Branch operation is usually implemented by two machine instructions. The first instruction tests the

status flag and the second performs the branch.

An analogous sequence of operations is used for transferring output to the display. An example is

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

Again, the Branch operation is normally implemented by two machine instructions. The wait loop is executed

repeatedly until the status flag SOUT is set to 1 by the display when it is free to receive a character. The

Output operation transfers a character from R1 to DATAOUT to be displayed, and it clears SOUT to 0.

The addresses issued by the processor to access instructions and operands always refer to memory

locations. Many computers use an arrangement called memory-mapped I /O in which some memory

address values are used to refer to peripheral device buffer registers, such as DATAIN and DATAOUT. Thus,

no special instructions are needed to access the contents of these registers; data can be transferred between

these registers and the processor using instructions that we have already discussed, such as Move, Load, or

Store. For example, the contents of the keyboard character buffer DATAIN can be transferred to register R1

in the processor by the instruction

MoveByte DATAIN,R1

Similarly, the contents of register R1 can be transferred to DATAOUT by the instruction

MoveByte R1,DATAOUT

The status flags SIN and SOUT are automatically cleared when the buffer registers

DATAIN and DATAOUT are referenced, respectively.

The two data buffers DATAIN & DATAOUT may be addressed as if they were two memory locations. It is

possible to deal with the status flags SIN and SOUT in the same way, by assigning them distinct addresses.

However, it is more common to include SIN and SOUT in device status registers, one for each of the two

devices. Let us assume that bit b3 in registers INSTATUS and OUTSTATUS corresponds to SIN and SOUT,

respectively. The read operation just described may now be implemented by the machine instruction

sequence

READWAIT Testbit #3,INSTATUS

Branch=0 READWAIT

MoveByte DATAIN,R1

The write operation may be implemented as

WRITEWAIT Testbit #3,OUTSTATUS

Branch=0 WRITEWAIT

MoveByte R1,DATAOUT

The Testbit instruction tests the state of one bit in the destination location, where the bit position to be tested

is indicated by the first operand. If the bit tested is equal to 0, then the condition of the branch instruction is

true, and a branch is made to the beginning of the wait loop. When the device is ready, that is, when the bit

tested becomes equal to 1, the data are read from the input buffer or written into the output buffer.

SUBROUTINES

In a given program, it is often necessary to perform a particular subtask many times on different data

values. Such a subtask is usually called a subroutine.

It is possible to include the block of instructions that constitute a subroutine at every place where it is needed

in the program. However, to save space, only one copy of the instructions that constitute the subroutine is

placed in the memory, and any program that requires the use of the subroutine simply branches to its

starting location. When a program branches to a subroutine we say that it is calling the subroutine. The

instruction that performs this branch operation is named a Call instruction.

After a subroutine has been executed, the calling program must resume execution, continuing immediately

after the instruction that called the subroutine. The subroutine is said to return to the program that called it

by executing a Return instruction. Since the subroutine may be called from different places in a calling

program, provision must be made for returning to the appropriate location. The location where the calling

program resumes execution is the location pointed to by the updated PC while the Call instruction is being

executed. Hence, the contents of the PC must be saved by the Call instruction to enable correct return to the

calling program.

The way in which a computer makes it possible to call and return from subroutines is referred to as its

subroutine linkage method. The simplest subroutine linkage method is to save the return address in a

specific location, which may be a register dedicated to this function. Such a register is called the link register.

When the subroutine completes its task, the Return instruction returns to the calling program by branching

indirectly through the link register.

The Call instruction is just a special branch instruction that performs the following operations:

• Store the contents of the PC in the link register

• Branch to the target address specified by the instruction

The Return instruction is a special branch instruction that performs the operation:

• Branch to the address contained in the link register

The following Fig illustrates this procedure.

SUBROUTINE NESTING AND THE PROCESSOR STACK

A common programming practice, called subroutine nesting, is to have one subroutine call another. In this

case, the return address of the second call is also stored in the link register, destroying its previous contents.

Hence, it is essential to save the contents of the link register in some other location before calling another

subroutine. Otherwise, the return address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes its

computations and returns to the subroutine that called it. The return address needed for this first return is

the last one generated in the nested call sequence. That is, return addresses are generated and used in a

last-in–first-out order. This suggests that the return addresses associated with subroutine calls should be

pushed onto a stack. Many processors do this automatically as one of the operations performed by the Call

instruction. A particular register is designated as the stack pointer, SP, to be used in this operation. The stack

pointer points to a stack called the processor stack. The Call instruction pushes the contents of the PC onto

the processor stack and loads the subroutine address into the PC. The Return instruction pops the return

address from the processor stack into the PC.

PARAMETER PASSING

When calling a subroutine, a program must provide to the subroutine the parameters, that is, the operands

or their addresses, to be used in the computation. Later, the subroutine returns other parameters, in this

case, the results of the computation. This exchange of information between a calling program and a

subroutine is referred to as parameter passing. Parameter passing may be accomplished in several ways.

The parameters may be placed in registers or in memory locations, where they can be accessed by the

subroutine. Alternatively, the parameters may be placed on the processor stack used for saving the return

address.

Passing parameters through processor registers is straightforward and efficient. The following Fig. shows

how the program for adding a list of numbers can be implemented as a subroutine, with the parameters

passed through registers. The size of the list, n, contained in memory location N, and the address, NUM1, of

the first number, are passed through registers R1 and R2. The sum computed by the subroutine is passed

back to the calling program through register R0. The first four instructions in Fig. constitute the relevant part

of the calling program. The first two instructions load n and NUM1 into R1 and R2. The Call instruction

branches to the subroutine starting at location LISTADD. This instruction also pushes the return address onto

the processor stack. The subroutine computes the sum and places it in R0. After the return operation is

performed by the subroutine, the sum is stored in memory location SUM by the calling program.

MEMORY OPERATIONS

Both program instructions and data operands are stored in the memory. To execute an instruction, the processor control circuits must cause the word

(or words) containing the instruction to be transferred from the memory to the processor. Operands and results must also be moved between the

memory and the processor. Thus, two basic operations involving the memory are needed, namely, Load (or Read or Fetch) and Store (or Write).

The Load operation transfers a copy of the contents of a specific memory location to the processor. The memory contents remain unchanged. To

start a Load operation, the processor sends the address of the desired location to the memory and requests that its contents be read. The memory

reads the data stored at that address and sends them to the processor.

The Store operation transfers an item of information from the processor to a specific memory location, destroying the former contents of that

location. The processor sends the address of the desired location to the memory, together with the data to be written into that location.

INSTRUCTIONS AND INSTRUCTION SEQUENCING

The tasks carried out by a computer program consist of a sequence of small steps, such as adding two numbers, testing for a particular condition,

reading a character from the keyboard, or sending a character to be displayed on a display screen. A computer must have instructions capable of

performing four types of operations:

• Data transfers between the memory and the processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

we need some notation to represent the instructions.

REGISTER TRANSFER NOTATION

We need to describe the transfer of information from one location in the computer to another. Possible locations that may be involved in such

transfers are memory locations, processor registers, or registers in the I/O subsystem. The memory location is identified by a symbolic name.For

example,names for the addresses of memory locations may be LOC,PLACE, A,VAR2; processor register names may be R0, R5; and I/O register

names may be DATAIN, OUTSTATUS, and so on. The contents of a location are denoted by placing square brackets around the name of the

location. Thus, the expression

R1 ← [LOC]

means that the contents of memory location LOC are transferred into processor register R1.

As another example, consider the operation that adds the contents of registers R1 and R2, and then places their sum into register R3. This action is

indicated as

R3 ← [R1] + [R2]

This type of notation is known as Register Transfer Notation (RTN). Note that the right-hand side of an RTN expression always denotes a value,

and the left-hand side is the name of a location where the value is to be placed

.

ASSEMBLY LANGUAGE NOTATION

We need another type of notation to repress ent machine instructions and programs. For this, we use an assembly language format. For example, an

instruction that causes the transfer described above, from memory location LOC to processor register R1, isspecified by the statement

Move LOC,R1

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register R1 are overwritten.

The second example of adding two numbers contained in processor registers R1 and R2 and placing their sum in R3 can be specified by the

assembly language statement

Add R1,R2,R3

BASIC INSTRUCTION TYPES

The operation of adding two numbers is a fundamental capability in any computer. The statement

C = A + B

in a high-level language program is a command to the computer to add the current values of the two variables called A and B, and to assign the sum

to a third variable, C. When the program containing this statement is compiled, the three variables, A, B, and C, are assigned to distinct locations in

the memory. The contents of these locations represent the values of the three variables. Hence, the above high-level language statement requires the

action

C ← [A] + [B]

to take place in the computer. To carry out this action, the contents of memory locations A and B are fetched from the memory and transferred into

the processor where their sum is computed. This result is then sent back to the memory and stored in location C.

Let us first assume that this action is to be accomplished by a single machine instruction. Furthermore, assume that this instruction contains the

memory addresses of the three operands—A, B, and C. This three-address instruction can be represented symbolically as

Add A,B,C

Operands A and B are called the source operands, C is called the destination operand, and Add is the operation to be performed on the operands. A

general instruction of this type has the format

Operation Source1,Source2,Destination

If k bits are needed to specify the memory address of each operand, the encoded form of the above instruction must contain 3k bits for addressing

purposes in addition to the bits needed to denote the Add operation. For a modern processor with a 32-bit address space, a 3-address instruction is too

large to fit in one word for a reasonable word length.

Thus, a format that allows multiple words to be used for a single instruction would be needed to represent an instruction of this type. An alternative

approach is to use a sequence of simpler instructions to perform the same task, with each instruction having only one or two operands. Suppose that

two-address instructions of the form

Operation Source,Destination are available. An Add instruction of this type is

Add A,B

which performs the operation B←[A] + [B]. When the sum is calculated, the result is sent to the memory and stored in location B, replacing the

original contents of this location. This means that operand B is both a source and a destination.

A single two-address instruction cannot be used to solve our original problem, which is to add the contents of locations A and B, without destroying

either of them, and to place the sum in location C. The problem can be solved by using another two address instruction that copies the contents of

one memory location into another. Such an instruction is

Move B,C

which performs the operation C←[B], leaving the contents of location B unchanged. The operation C←[A] + [B] can now be performed by the

two-instruction sequence

Move B,C

Add A,C

We have defined three- and two-address instructions. But, even two-address instructions will not normally fit into one word for usual word lengths

and address sizes.

Another possibility is to have machine instructions that specify only one memory operand. When a second operand is needed, as in the case of an

Add instruction, it is understood implicitly to be in a unique location. A processor register, usually called the accumulator, may be used for this

purpose. Thus, the one-address instruction

Add A

means the following: Add the contents of memory location A to the contents of the accumulator register and place the sum back into the

accumulator. Let us also introduce the one-address instructions

Load A

and

Store A

The Load instruction copies the contents of memory location A into the accumulator, and the Store instruction copies the contents of the

accumulator into memory location A. Using only one-address instructions, the operation C←[A]+[B] can be performed by executing the

sequence of instructions

Load A

Add B

Store C

Note that the operand specified in the instruction may be a source or a destination, depending on the instruction. In the Load instruction, address A

specifies the source operand, and the destination location, the accumulator, is implied. On the other hand, C denotes the destination location in the

Store instruction, whereas the source, the accumulator, is implied.

Some early computers were designed around a single accumulator structure. Most modern computers have a number of general-purpose

processor registers — typically 8 to 32, and even considerably more in some cases. Access to data in these registers is much faster than to data stored

in memory locations because the registers are inside the processor. Because the number of registers is relatively small, only a few bits are needed to

specify which register takes part in an operation. For example, for 32 registers, only 5 bits are needed. This is much less than the number of bits

needed to give the address of a location in the memory. Because the use of registers allows faster processing and results in shorter instructions,

registers are used to store data temporarily in the processor during processing.

Let Ri represent a general-purpose register. The instructions

Load A,Ri

Store Ri ,A

and

Add A,Ri

are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in which register Ri performs the function of the

accumulator. Even in these cases, when only one memory address is directly specified in an instruction, the instruction may not fit into one word.

When a processor has several general-purpose registers, many instructions involve only operands that are in the registers. In fact, in many modern

processors, computations can be performed directly only on data held in processor registers. Instructions such as

Add Ri,R j

or

Add Ri,R j,Rk

are of this type. In both of these instructions, the source operands are the contents of registers Ri and Rj . In the first instruction, Rj also serves as the

destination register, whereas in the second instruction, a third register, Rk, is used as the destination. Such instructions, where only register names are

contained in the instruction, will normally fit into one word.

In processors where arithmetic operations are allowed only on operands that are in processor registers, the C = A + B task can be performed by the

instruction sequence

Move A,Ri

Move B,R j

Add Ri,R j

Move R j,C

In processors where one operand may be in the memory but the other must be in a register, an instruction sequence for the required task would be

Move A,Ri

Add B,Ri

Move Ri,C

The speed with which a given task is carried out depends on the time it takes to transfer instructions from memory into the processor and to access

the operands referenced by these instructions. Transfers that involve the memory are much slower than transfers within the processor. Hence, a

substantial increase in speed is achieved when several operations are performed in succession on data in processor registers without the need to copy

data to or from the memory. When machine language programs are generated by compilers from high-level languages, it is important to minimize

the frequency with which data is moved back and forth between the memory and processor registers.

We have discussed three-, two-, and one-address instructions. It is also possible to use instructions in which the locations of all operands are defined

implicitly. Such instructions are found in machines that store operands in a structure called a pushdown stack. In this case, the instructions are called

zero-address instructions.

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING

Consider the instruction C ← [A] + [B]

Figure shows a possible program segment for this task as it appears in the memory of a computer. We have assumed that the computer allows one

memory operand per instruction and has a number of processor registers. We assume that the word length is 32 bits and the memory is byte

addressable. The three instructions of the program are in successive word locations, starting at location i. Since each instruction is 4 bytes long, the

second and third instructions start at addresses i + 4 and i + 8.

Figure 2.8 A program for C ← [A] + [B].

Let us consider how this program is executed. The processor contains a register called the program counter (PC), which holds the address of the

instruction to be executed next. To begin executing a program, the address of its first instruction (i in our example) must be placed into the PC. Then,

the processor control circuits use the information in the PC to fetch and execute instructions, one at a time, in the order of increasing addresses. This is

called straight-line sequencing. During the execution of each instruction, the PC is incremented by 4 to point to the next instruction. Thus, after the

Move instruction at location i + 8 is executed, the PC contains the value i + 12, which is the address of the first instruction of the next program

segment.

Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch, the instruction is fetched from the memory location

whose address is in the PC. This instruction is placed in the instruction register (IR) in the processor.At the start of the second phase, called instruction

execute, the instruction in IR is examined to determine which operation is to be performed. The specified operation is then performed by the

processor. This often involves fetching operands from the memory or from processor registers, performing an arithmetic or logic operation, and

storing the result in the destination location. At some point during this two-phase procedure, the contents of the PC are advanced to point to the next

instruction. When the execute phase of an instruction is completed, the PC contains the address of the next instruction, and a new instruction fetch

phase can begin.

BRANCHING

Consider the task of adding a list of n numbers. The addresses of the memory locations containing the n numbers are symbolically given as

NUM1, NUM2, . . . , NUMn, and a separate Add instruction is used to add each number to the contents of register R0. After all the numbers have

been added, the result is placed in memory location SUM.

Instead of using a long list of Add instructions, it is possible to place a single Add instruction in a program loop. The loop is a straight-line sequence of

instructions executed as many times as needed. It starts at location LOOP and ends at the instruction Branch>0. During each pass through this loop,

the address of the next list entry is determined, and that entry is fetched and added to R0.

Assume that the number of entries in the list, n, is stored in memory location N, as shown. Register R1 is used as a counter to determine the number

of times the loop is executed. Hence, the contents of location N are loaded into register R1 at the beginning of the program. Then, within the body of

the loop, the instruction Decrement R1 reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the

result of the decrement operation is greater than zero.

We now introduce branch instructions. This type of instruction loads a new value into the program counter. As a result, the processor fetches and

executes the instruction at this new address, called the branch target, instead of the instruction at the location that follows the branch instruction in

sequential address order. A conditional branch instruction causes a branch only if a specified condition is satisfied. If the condition is not satisfied, the

PC is incremented in the normal way, and the next instruction in sequential address order is fetched and executed.

In the program , the instruction

Branch>0 LOOP

(branch if greater than 0) is a conditional branch instruction that causes a branch to location LOOP if the result of the immediately preceding

instruction, which is the decremented value in register R1, is greater than zero. This means that the loop is repeated as long as there are entries in the

list that are yet to be added to R0. At the end of the nth pass through the loop, the Decrement instruction produces a value of zero, and, hence,

branching does not occur. Instead, the Move instruction is fetched and executed. It moves the final result from R0 into memory location SUM.

CONDITION CODES

The processor keeps track of information about the results of various operations for use by subsequent conditional branch instructions. This is

accomplished by recording the required information in individual bits, often called condition code flags. These flags are usually grouped together in

a special processor register called the condition code register or status register. Individual condition code flags are set to 1 or cleared to 0, depending

on the outcome of the operation performed.

Four commonly used flags are

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out results from the operation; otherwise, cleared to 0

The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or zero. The N and Z flags may also be affected by

instructions that transfer data, such as Move, Load, or Store. This makes it possible for a later conditional branch instruction to cause a branch based

on the sign and value of the operand that was moved. Some computers also provide a special Test instruction that examines a value in a register or in

the memory and sets or clears the N and Z flags accordingly. The V flag indicates whether overflow has taken place. An overflow occurs when the

result of an arithmetic operation is outside the range of values that can be represented by the number of bits available for the operands. The processor

sets the V flag to allow the programmer to test whether overflow has occurred and branch to an appropriate routine that corrects the problem.

The C flag is set to 1 if a carry occurs from the most significant bit position during an arithmetic operation.

 ADDRESSINGMODES

The different ways in which the location of an operand is specified in an instruction are referred to as addressing modes.

 IMPLEMENTATION OF VARIABLES AND CONSTANTS

Variables and constants are the simplest data types and are found in almost every computer program. In assembly language, a variable is represented

by allocating a register or a memory location to hold its value. This results in two modes .

Register mode — The operand is the contents of a processor register; the name (address) of the register is given in the instruction.

Absolute mode — The operand is in a memory location; the address of this location is given explicitly in the instruction. (In some assembly

languages, this mode is called Direct.)

The instruction

Move LOC,R2

uses these two modes. Processor registers are used as temporary storage locations where the data in a register are accessed using the Register mode.

The Absolute mode can represent global variables in a program.

Next, let us consider the representation of constants. Address and data constants can be represented in assembly language using the Immediate

mode.

Immediate mode — The operand is given explicitly in the instruction. For example, the instruction

Move 200immediate, R0

places the value 200 in register R0. Clearly, the Immediate mode is only used to specify the value of a source operand. Using a subscript to denote

the Immediate mode is not appropriate in assembly languages. A common convention is to use the sharp sign (#) in front of the value to indicate that

this value is to be used as an immediate operand.

Hence, we write the instruction above in the form

Move #200,R0

Constant values are used frequently in high-level language programs. For exmple, the statement

A = B + 6

contains the constant 6. Assuming that A and B have been declared earlier as variables and may be accessed using the Absolute mode, this

statement may be compiled as follows:

Move B,R1

Add #6,R1

Move R1,A

INDIRECTION AND POINTERS

In the some addressing modes , the instruction does not give the operand or its address explicitly. Instead, it provides information from which the

memory address of the operand can be determined. We refer to this address as the effective address (EA) of the operand.

Indirect mode — The effective address of the operand is the contents of a register or memory location whose address appears in the instruction. We

denote indirection by placing the name of the register or the memory address given in the instruction in parentheses .as illustrated

To execute the Add instruction in Figure a, the processor uses the value B, which is in register R1, as the effective address of the operand. It requests a

read operation from the memory to read the contents of location B. The value read is the desired operand, which the processor adds to the contents

of register R0.

Indirect addressing through a memory location is also possible as shown in Figure b. In this case, the processor first reads the contents of memory

location A, then requests a second read operation using the value B as an address to obtain the operand.

The register or memory location that contains the address of an operand is called a pointer. Indirect addressing can be used to access successive

numbers in the list, resulting in the program shown in Figure 2.12. Register R2 is used as a pointer to the numbers in the list, and the operands are

accessed indirectly through R2. The initialization section of the program loads the counter value n from memory location N into R1 and uses the

Immediate addressing mode to place the address value NUM1, which is the address of the first number in the list, into R2. Then it clears R0 to 0..

The first time through the loop, the instruction

Add (R2),R0

fetches the operand at location NUM1 and adds it to R0. The second Add instruction adds 4 to the contents of the pointer R2, so that it will contain

the address value NUM2 when the above instruction is executed in the second pass through the loop.

INDEXING AND ARRAYS

It is useful in dealing with lists and arrays.

Index mode — The effective address of the operand is generated by adding a constant value to the contents of a register. The register used may be

either a special register provided for this purpose, or, more commonly, it may be any one of a set of general-purpose registers in the processor. In

either case, it is referred to as an index register. We indicate the Index mode symbolically as

X(Ri)

where X denotes the constant value contained in the instruction and Ri is the name of the register involved. The effective address of the operand is

given by

EA = X + [Ri]

The contents of the index register are not changed in the process of generating the effective address.

In an assembly language program, the constant X may be given either as an explicit number or as a symbolic name representing a numerical value.

When the instruction is translated into machine code, the constant X is given as a part of the instruction and is usually represented by fewer bits than

the word length of the computer.

Figure 2.13 illustrates two ways of using the Index mode. In Figure 2.13a, the index register, R1, contains the address of a memory location, and the

value X defines an offset (also called a displacement) from this address to the location where the operand is found.

An alternative use is illustrated in Figure 2.13b. Here, the constant X corresponds to a memory address, and the contents of the index register define

the offset to the operand. In either case, the effective address is the sum of two values; one is given explicitly in the instruction, and the other is stored

in a register.

In general, the Index mode facilitates access to an operand whose location is defined relative to a reference point within the data structure in which

the operand appears. Several variations of this basic form provide for very efficient access to memory operands in practical programming situations.

For example, a second register may be used to contain the offset X, in which case we can write the Index mode as (Ri,R j) The effective address is

the sum of the contents of registers Ri and Rj . The second register is usually called the base register. This form of indexed addressing provides more

flexibility in accessing operands, because both components of the effective address can be changed.

RELATIVE ADDRESSING

A variation of index AM is Relative addressing mode. Here program counter, PC, is used instead of a general purpose register. Then, X(PC) can be

used to address a memory location that is X bytes away from the location presently pointed to by the program counter. Since the addressed location

is identified “relative” to the program counter, which always identifies the current execution point in a program, the name Relative mode is

associated with this type of addressing.

Relative mode — The effective address is determined by the Index mode using the program counter in place of the general-purpose register Ri.

This mode can be used to access data operands. But, its most common use is to specify the target address in branch instructions. An instruction such

as

Branch>0 LOOP

causes program execution to go to the branch target location identified by the name LOOP if the branch condition is satisfied. This location can be

computed by specifying it as an offset from the current value of the program counter. Since the branch target may be either before or after the branch

instruction, the offset is given as a signed number.

Recall that during the execution of an instruction, the processor increments the PC to point to the next instruction. Most computers use this updated

value in computing the effective address in the Relative mode. For example, suppose that the Relative mode is used to generate the branch target

address LOOP in the Branch instruction of the program .Assume that the four instructions of the loop body, starting at LOOP, are located at

memory locations 1000, 1004, 1008, and 1012. Hence, the updated contents of the PC at the time the branch target address is generated will be

1016. To branch to location LOOP (1000), the offset value needed is X = −16.

ADDITIONAL MODES

Many computers provide additional modes intended to aid certain programming tasks. The two modes described next are useful for accessing data

items in successive locations in the memory.

Autoincrement mode — The effective address of the operand is the contents of a register specified in the instruction. After accessing the operand, the

contents of this register are automatically incremented to point to the next item in a list. We denote the Autoincrement mode by putting the specified

register in parentheses, to show that the contents of the register are used as the effective address, followed by a plus sign to indicate that these contents

are to be incremented after the operand is accessed. Thus, the Autoincrement mode is written as

(Ri)+

Implicitly, the increment amount is 1 when the mode is given in this form. But in a byte addressable memory, this mode would only be useful in

accessing successive bytes of some list. To access successive words in a byte-addressable memory with a 32-bit word length, the increment must be

4. Computers that have the Autoincrement mode automatically increment the contents of the register by a value that corresponds to the size of the

accessed operand. Thus, the increment is 1 for byte-sized operands, 2 for 16-bit operands, and 4 for 32-bit operands. Since the size of the operand is

usually specified as part of the operation code of an instruction, it is sufficient to indicate the Autoincrement mode as (Ri)+.

As a companion for the Autoincrement mode, another useful mode accesses the items of a list in the reverse order:

Autodecrement mode — The contents of a register specified in the instruction are first automatically decremented and are then used as the effective

address of the operand. We denote the Autodecrement mode by putting the specified register in parentheses, preceded by a minus sign to indicate

that the contents of the register are to be decremented before being used as the effective address. Thus, we write

−(Ri)

In this mode, operands are accessed in descending address order.These two modes can be used together to implement an important data structure

called a stack.

.

ASSEMBLY LANGUAGE Read by yourself

ASSEMBLER DIRECTIVES Read by yourself

 NUMBER NOTATION

When dealing with numerical values, it is often convenient to use the familiar decimal notation. Of course, these values are stored in the computer as

binary numbers. In some situations, it is more convenient to specify the binary patterns directly. Most assemblers allow numerical values to be

specified in different ways, using conventions that are defined by the assembly language syntax. Consider, for example, the number 93, which is

represented by the 8-bit binary number 01011101. If this value is to be used as an immediate operand, it can be given as a decimal number, as in the

instruction

ADD #93,R1

or as a binary number identified by a prefix symbol such as a percent sign, as in

ADD #%01011101,R1

Binary numbers can be written more compactly as hexadecimal, or hex, numbers, in which four bits are represented by a single hex digit. The hex

notation is a direct extension of the BCD code given in Appendix E. The first ten patterns 0000, 0001, . . . , 1001, are represented by the digits 0, 1, . . .

, 9, as in BCD. The remaining six 4-bit patterns, 1010, 1011, . . . , 1111, are represented by the letters A, B, . . . , F. In hexadecimal representation, the

decimal value 93 becomes 5D. In assembly language, a hex representation is often identified by a dollar sign prefix. Thus, we would write ADD

#$5D,R1

BASIC INPUT/OUTPUT OPERATIONS

We now consider the data transfer between the memory of a computer and the outside world. Input/Output (I/O) operations are essential, and the

way they are performed can have a significant effect on the performance of the computer. Here, we introduce a few basic ideas.

Consider a task that reads in character input from a keyboard and produces character output on a display screen. A simple way of performing such

I/O tasks is to use a method known as program-controlled I/O. The rate of data transfer from the keyboard to a computer is limited by the typing

speed of the user, which is unlikely to exceed a few characters per second. The rate of output transfers from the computer to the display is much

higher. It is determined by the rate at which characters can be transmitted over the link between the computer and the display device, typically

several thousand characters per second. However, this is still much slower than the speed of a processor that can execute many millions of

instructions per second. The difference in speed between the processor and I/O devices creates the need for mechanisms to synchronize the transfer

of data between them.

A solution to this problem is as follows: On output, the processor sends the first character and then waits for a signal from the display that the

character has been received. It then sends the second character, and so on. Input is sent from the keyboard in a similar way; the processor waits for a

signal indicating that a character key has been struck and that its code is available in some buffer register associated with the keyboard. Then the

processor proceeds to read that code. The keyboard and the display are separate devices as shown in Figure 2.19. The action of striking a key on the

keyboard does not automatically cause the corresponding character to be displayed on the screen. One block of instructions in the I/O program

transfers the character into the processor, and another associated block of instructions causes the character to be displayed.

Consider the problem of moving a character code from the keyboard to the processor. Striking a key stores the corresponding character code in an

8-bit buffer register associated with the keyboard. Let us call this register DATAIN, as shown in Figure 2.19. To inform the processor that a valid

character is in DATAIN, a status control flag, SIN, is set to 1. A program monitors SIN, and when SIN is set to 1, the processor reads the contents of

DATAIN. When the character is transferred to the processor, SIN is automatically cleared to 0. If a second character is entered at the keyboard, SIN

is again set to 1 and the process repeats.

An analogous process takes place when characters are transfer rred from the processor to the display. A buffer register, DATAOUT, and a status

control flag, SOUT, are used for this transfer. When SOUT equals 1, the display is ready to receive a character. Under program control, the

processor monitors SOUT, and when SOUT is set to 1, the processor transfers a character code to DATAOUT. The transfer of a character to

DATAOUT clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again set to 1. The buffer registers

DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry commonly known as a device interface. The circuitry for each

device is connected to the processor via a bus, as indicated in Figure 2.19.

In order to perform I/O transfers, we need machine instructions that can check the state of the status flags and transfer data between the processor and

the I/O device. These instructions are similar in format to those used for moving data between the processor and the memory. For example, the

processor can monitor the keyboard status flag SIN and transfer a character from DATAIN to register R1 by the following sequence of operations:

READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

The Branch operation is usually implemented by two machine instructions. The first instruction tests the status flag and the second performs the

branch.

An analogous sequence of operations is used for transferring output to the display. An example is

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

Again, the Branch operation is normally implemented by two machine instructions. The wait loop is executed repeatedly until the status flag SOUT

is set to 1 by the display when it is free to receive a character. The Output operation transfers a character from R1 to DATAOUT to be displayed, and

it clears SOUT to 0.

We assume that the initial state of SIN is 0 and the initial state of SOUT is 1. This initialization is normally performed by the device control circuits

when the devices are placed under computer control before program execution begins. Until now, we have assumed that the addresses issued by

the processor to access instructions and operands always refer to memory locations. Many computers use an arrangement called memory-mapped

I /O in which some memory address values are used to refer to peripheral device buffer registers, such as DATAIN and DATAOUT.

Thus, no special instructions are needed to access the contents of these registers; data can be transferred between these registers and the processor

using instructions that we have already discussed, such as Move, Load, or Store. For example, the contents of the keyboard character buffer

DATAIN can be transferred to register R1 in the processor by the instruction

MoveByte DATAIN,R1

Similarly, the contents of register R1 can be transferred to DATAOUT by the instruction

MoveByte R1,DATAOUT

The status flags SIN and SOUT are automatically cleared when the buffer registers DATAIN and DATAOUT are referenced, respectively. The

MoveByte operation code signifies that the operand size is a byte, to distinguish it from the operation code Move that has been used for word

operands.

It is possible to deal with the status flags SIN and SOUT in the same way, by assigning them distinct addresses. However, it is more common to

include SIN and SOUT in device status registers, one for each of the two devices. Let us assume that bit b3 in registers INSTATUS and

OUTSTATUS corresponds to SIN and SOUT, respectively. The read operation just described may now be implemented by the machine

instruction sequence

READWAIT Testbit #3,INSTATUS

Branch=0 READWAIT

MoveByte DATAIN,R1

The write operation may be implemented as

WRITEWAIT Testbit #3,OUTSTATUS

Branch=0 WRITEWAIT

MoveByte R1,DATAOUT

The Testbit instruction tests the state of one bit in the destination location, where the bit position to be tested is indicated by the first operand. If the bit

tested is equal to 0, then the condition of the branch instruction is true, and a branch is made to the beginning of the wait loop. When the device is

ready, that is, when the bit tested becomes equal to 1, the data are read from the input buffer or written into the output buffer.

The program shown in Figure 2.20 uses these two operations to read a line of characters typed at a keyboard and send them out to a display device.

As the characters are read in, one by one, they are stored in a data area in the memory and then echoed back out to the display.

Move #LOC,R0 Initialize pointer register R0 to point to the

address of the first location in memory

where the characters are to be stored.

READ TestBit #3,INSTATUS Wait for a character to be entered

Branch=0 READ in the keyboard buffer DATAIN.

MoveByte DATAIN,(R0) Transfer the character from DATAIN into

the memory (this clears SINto 0).

ECHO TestBit #3,OUTSTATUS Wait for the display to become ready.

Branch=0 ECHO

MoveByte (R0),DATAOUT Move the character just read to the display

buffer register (this clears SOUT to 0).

Compare #CR,(R0)+ Check if the character just read is CR

(carriage return). If it is not CR, then

Branch_=0 READ branch back and read another character.

Also, increment the pointer to store thenext character.

Figure 2.20 A program that reads a line of characters and displays it.

STACKS AND QUEUES

A computer program often needs to perform a particular subtask using the familiar subroutine structure. In order to organize the control and

information linkage between the main program and the subroutine, a data structure called a stack is used.

Data operated on by a program can be organized in a variety of ways.Consider an important data structure known as a stack. A stack is a list of data

elements, usually words or bytes, with the accessing restriction that elements can be added or removed at one end of the list only. This end is called

the top of the stack, and the other end is called the bottom. Another descriptive phrase, last-in–first-out (LIFO) stack, is also used to describe this type

of storage mechanism; the last data item placed on the stack is the first one removed when retrieval begins. The terms push and pop are used to

describe placing a new item on the stack and removing the top item from the stack, respectively.

Data stored in the memory of a computer can be organized as a stack, with successive elements occupying successive memory locations. Assume

that the first element is placed in location BOTTOM, and when new elements are pushed onto the stack, they are placed in successively lower

address locations.

.

Figure 2.21 shows a stack of word data items in the memory of a computer. It contains numerical values, with 43 at the bottom and −28 at the top. A

processor register is used to keep track of the address of the element of the stack that is at the top at any given time. This register is called the stack

pointer (SP). It could be one of the general-purpose registers or a register dedicated to this function. If we assume a byte-addressable memory with a

32-bit word length, the push operation can be implemented as

Subtract #4,SP

Move NEWITEM,(SP)

where the Subtract instruction subtracts the source operand 4 from the destination operand contained in SP and places the result in SP. These two

instructions move the word from location NEWITEM onto the top of the stack, decrementing the stack pointer by 4 before the move. The pop

operation can be implemented as

Move (SP),ITEM

Add #4,SP

These two instructions move the top value from the stack into location ITEM and then increment the stack pointer by 4 so that it points to the new

top element.

If the processor has the Autoincrement and Autodecrement addressing modes, then the push operation can be performed by the single instruction

Move NEWITEM,−(SP)

and the pop operation can be performed by

Move (SP)+,ITEM

When a stack is used in a program, it is usually allocated a fixed amount of space in the memory. In this case, we must avoid pushing an item onto

the stack when the stack has reached its maximum size. Also, we must avoid attempting to pop an item off an empty stack, which could result from

a programming error. Suppose that a stack runs from location 2000 (BOTTOM) down no further than location 1500. The stack pointer is loaded

initially with the address value 2004. Recall that SP is decremented by 4 before new data are stored on the stack. Hence, an initial value of 2004

means that the first item pushed onto the stack will be at location 2000. To prevent either pushing an item on a full stack or popping an item off an

empty stack, the single-instructionpush pop operations can be replaced by the instruction sequences shown in Fig.

The Compare instruction

Compare src,dst

performs the operation [dst] − [src] and sets the condition code flags according to the result. It does not change the value of either operand.

Another useful data structure that is similar to the stack is called a queue. Data are stored in and retrieved from a queue on a first-in–first-out (FIFO)

basis. Thus, if we assume that the queue grows in the direction of increasing addresses in the memory, new data are added at the back (high-address

end) and retrieved from the front (low-address end) of the queue.

There are two important differences between how a stack and a queue are implemented. One end of the stack is fixed (the bottom), while the other

end rises and falls as data are pushed and popped. A single pointer is needed to point to the top of the stack at any given time. On the other hand, both

ends of a queue move to higher addresses as data are added at the back and removed from the front. So two pointers are needed to keep track of the

two ends of the queue.

Another difference between a stack and a queue is that, without further control, a queue would continuously move through the memory of a

computer in the direction of higher addresses. One way to limit the queue to a fixed region in memory is to use a circular buffer. Let us assume that

memory addresses from BEGINNING to END are assigned to the queue. The first entry in the queue is entered into location BEGINNING, and

successive entries are appended to the queue by entering them at successively higher addresses. By the time the back of the queue reaches END,

space will have been created at the beginning if some items have been removed from the queue. Hence, the back pointer is reset to the value

BEGINNING and the process continues.

SUBROUTINES

In a given program, it is often necessary to perform a particular subtask many times on different data values. Such a subtask is usually called a

subroutine. For example, a subroutine may evaluate the sine function or sort a list of values into increasing or decreasing order.

It is possible to include the block of instructions that constitute a subroutine at every place where it is needed in the program. However, to save space,

only one copy of the instructions that constitute the subroutine is placed in the memory, and any program that requires the use of the subroutine

simply branches to its starting location. When a program branches to a subroutine we say that it is calling the subroutine. The instruction that

performs this branch operation is named a Call instruction. After a subroutine has been executed, the calling program must resume execution,

continuing immediately after the instruction that called the subroutine. The subroutine

is said to return to the program that called it by executing a Return instruction. Since the subroutine may be called from different places in a calling

program, provision must be made for returning to the appropriate location. The location where the calling program resumes execution is the

location pointed to by the updated PC while the Call instruction is being executed. Hence, the contents of the PC must be saved by the Call

instruction to enable correct return to the calling program.The way in which a computer makes it possible to call and return from subroutines is

referred to as its subroutine linkage method. The simplest subroutine linkage method is to save the return address in a specific location, which may

be a register dedicated to this function. Such a register is called the link register. When the subroutine completes its task, the Return instruction returns

to the calling program by branching indirectly through the link register. The Call instruction is just a special branch instruction that performs the

following operations:

• Store the contents of the PC in the link register

• Branch to the target address specified by the instruction

The Return instruction is a special branch instruction that performs the operation:

• Branch to the address contained in the link register

SUBROUTINE NESTING AND THE PROCESSOR STACK

A common programming practice, called subroutine nesting, is to have one subroutine call another. In this case, the return address of the second call

is also stored in the link register, destroying its previous contents. Hence, it is essential to save the contents of the link register in some other location

before calling another subroutine. Otherwise, the return address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes its computations and returns to the subroutine that

called it. The return address needed for this first return is the last one generated in the nested call sequence. That is, return addresses are generated and

used in a last-in–first-out order. This suggests that the return addresses associated with subroutine calls should be pushed onto a stack.

PARAMETER PASSING

When calling a subroutine, a program must provide to the subroutine the parameters, that is, the operands or their addresses, to be used in the

computation. Later, the subroutine returns other parameters, in this case, the results of the computation. This exchange of information between a

calling program and a subroutine is referred to as parameter passing. Parameter passing may be accomplished in several ways. The parameters

may be placed in registers or in memory locations, where they can be accessed by the subroutine. Alternatively, the parameters may be placed on

the processor stack used for saving the return address.

Passing parameters through processor registers is straightforward and efficient.

Figure 2.25 shows how the program for adding a list of numbers can be implemented as a subroutine, with the parameters passed through registers.

The size of the list, n, contained in memory location N, and the address, NUM1, of the first number, are passed through registers R1 and R2. The

sum computed by the subroutine is passed back to the calling program through register R0. The Call instruction branches to the subroutine starting

at location LISTADD. This instruction also pushes the return address onto the processor stack. The subroutine computes the sum and places it in

R0. After the return operation is performed by the subroutine, the sum is stored in memory location SUM by the calling program.

If many parameters are involved, there may not be enough general-purpose registers available for passing them to the subroutine. Using a stack, on

the other hand, is highly flexible; a stack can handle a large number of parameters. The following example illustrates this approach. Figure 2.26a

shows the program , LISTADD, which can be called by any other program to add a list of

numbers. The parameters passed to this subroutine are the address of the first number in the list and the number of entries. The subroutine performs

the addition and returns the computed sum. The parameters are pushed onto the processor stack pointed to by register SP. Assume that before the

subroutine is called, the top of the stack is at level 1 in Figure 2.26b.

 The calling program pushes the address NUM1 and the value n onto the stack and calls subroutine LISTADD. The Call instruction also pushes

the return address onto the stack. The top of the stack is now at level 2. The subroutine uses three registers. Since these registers may contain valid

data that belong to the calling program, their contents should be saved by pushing them onto the stack. We have used a single instruction,

MoveMultiple, to store the contents of registers R0 through R2 on the stack. Many processors have such instructions. The top of the stack is now at

level 3. The subroutine accesses the parameters n and NUM1 from the stack using indexed addressing. Note that it does not change the stack

pointer because valid data items are still at the top of the stack. The value n is loaded into R1 as the initial value of the count, and the address NUM1

is loaded into R2, which is used as a pointer to scan the list entries. At the end of the computation, register R0 contains the sum. Before the subroutine

returns to the calling program, the contents of R0 are placed on the stack, replacing the parameter NUM1, which is no longer needed. Then the

contents of the three registers used by the subroutine are restored from the stack.Now the top item on the stack is the return address at level 2. After

the subroutine returns, the calling program stores the result in location SUM and lowers the top of the stack to its original level by incrementing the

SP by 8.

Parameter Passing by Value and by Reference

Note the nature of the two parameters, NUM1 and n, passed to the subroutines in Figures 2.25 and 2.26. The purpose of the subroutines is to add a

list of numbers. Instead of passing the actual list entries, the calling program passes the address of the first number in the list. This technique is called

passing by reference. The second parameter is passed by value, that is, the actual number of entries, n, is passed to the subroutine.

THE STACK FRAME

During execution of the subroutine, six locations at the top of the stack contain entries that are needed by the subroutine. These locations constitute a

private work space for the subroutine, created at the time the subroutine is entered and freed up when the subroutine returns control to the calling

program. Such space is called a stack frame. If the subroutine requires more space for local

m emor y variables, they

can also be allocated on the stack.

Figure 2.27 shows an example of a commonly used layout for information in a stack frame. In addition to the stack pointer SP, it is useful to have

another pointer register, called the frame pointer (FP), for convenient access to the parameters passed to the subroutine and to the local memory

variables used by the subroutine. These local variables are only used within the subroutine, so it is appropriate to allocate space for them in the stack

frame associated with the subroutine. In the figure, we assume that four parameters are passed to the subroutine, three local variables are used within

the subroutine, and registers R0 and R1 need to be saved because they will also be used within the subroutine.

With the FP register pointing to the location just above the stored return address, as shown in Figure 2.27, we can easily access the parameters and

the local variables by using the Index addressing mode. The parameters can be accessed by using addresses 8(FP), 12(FP), The local variables

can be accessed by using addresses −4(FP), −8(FP),The contents of FP remain fixed throughout the execution of the subroutine, unlike the stack

pointer SP, which must always point to the current top element in the stack.

Assume that SP points to the old top-of-stack (TOS) element in Figure 2.27. Before the subroutine is called, the calling program pushes the four

parameters onto the stack. The Call instruction is then executed, resulting in the return address being pushed onto the stack. Now, SP points to this

return address, and the first instruction of the subroutine is about to be executed. This is the point at which the frame pointer FP is set to contain the

proper memory address. Since FP is usually a general-purpose register, it may contain information of use to the calling program. Therefore, its

contents are saved by pushing them onto the stack. Since the SP now points to this position, its contents are copied into FP.

Thus, the first two instructions executed in the subroutine are

Move FP,−(SP)

Move SP,FP

After these instructions are executed, both SP and FP point to the saved FP contents.

Space for the three local variables is now allocated on the stack by executing the instruction

Subtract #12,SP

Finally, the contents of processor registers R0 and R1 are saved by pushing them onto the stack. At this point, the stack frame has been set up as

shown in the figure.

The subroutine now executes its task. When the task is completed, the subroutine pops the saved values of R1 and R0 back into those registers,

removes the local variables from the stack frame by executing the instruction

Add #12,SP

and pops the saved old value of FP back into FP. At this point, SP points to t he return address, so the Return instruction can be executed, transferring

control back to the calling program.

The calling program is responsible for removing the parameters from the stack frame, some of which may be results passed back by the subroutine.

The stack pointer now points to the old TOS.

Stack Frames for Nested Subroutines : read by yourself

.

Additional instructions : Read by yourself

ENCODING OFMACHINE INSTRUCTIONS

We have introduced a variety of useful instructions and addressing modes. These instructions specify the actions that must be performed

by the processor circuitry to carry out the desired tasks. We have often referred to them as machine instructions. Actually, the form in which

we have presented the instructions is indicative of the forms used in assembly languages. To be executed in a processor, an instruction must

be encoded in a compact binary pattern. Such encoded instructions are properly referred to as machine instructions. The instructions that

use symbolic names and acronyms are called assembly language instructions, which are converted into the machine instructions using the

assembler program.

In the previous sections, we made a simplifying assumption that all instructions are one word in length. Since we usually refer to 32-bit

words, our assumption implies that this length is adequate to represent the necessary information. Let us now consider the validity of this

assumption.

We have seen instructions that perform operations such as add, subtract, move, shift, rotate, and branch. These instructions may use

operands of different sizes, such as 32-bit and 8-bit numbers or 8-bit ASCII-encoded characters. The type of operation that is to be

performed and the type of operands used may be specified using an encoded binary pattern referred to as the OPcode for the given

instruction. Suppose that 8 bits are allocated for this purpose, giving 256 possibilities for specifying different instructions. This leaves 24 bits

to specify the rest of the required information.

Let us examine some typical cases. The instruction

Add R1,R2

has to specify the registers R1 and R2, in addition to the OP code. If the processor has 16 registers, then four bits are needed to identify each

register. Additional bits are needed to indicate that the Register addressing mode is used for each operand.

The instruction

Move 24(R0),R5

requires 16 bits to denote the OP code and the two registers, and some bits to express that the source operand uses the Index addressing

mode and that the index value is 24.

Suppose that three bits are used to specify an addressing mode . Then six bits have to be available for this purpose, denoting the chosen

addressing modes of the source and destination operands. Hence, there are 10 bits left to give the index value. If these 10 bits suffice to

express an adequate range of signed numbers for indexing purposes, then the instruction fits into our 32-bit word.

The shift instruction

LshiftR #2,R0

and the move instruction

Move #$3A,R1

have to indicate the immediate values 2 and $3A, respectively, in addition to the 18 bits used to specify the OP code, the addressing modes,

and the register. This limits the size of the immediate operand to what is expressible in 14 bits.

Consider next the branch instruction

Branch>0 LOOP

Again, 8 bits are used for the OP code, leaving 24 bits to specify the branch offset. Since the offset is a 2’s-complement number, the branch

target address must be within 223 bytes of the location of the branch instruction. To branch to an instruction outside this range, a different

addressing mode has to be used, such as Absolute or Register Indirect. Branch instructions that use these modes are usually called Jump

instructions.

In all these examples, the instructions can be encoded in a 32-bitword. Figure 2.39a depicts a possible format.

There is an 8-bit OP-code field and two 7-bit fields for specifying the source and destination operands. The 7-bit field identifies the

addressing mode and the register involved (if any). The “Other info” field allows us to specify the additional information that may be

needed, such as an index value or an immediate operand.

But, what happens if we want to specify a memory operand using the Absolute addressing mode? The instruction

Move R2,LOC

requires 18 bits to denote the OPcode, the addressing modes, and the register. This leaves 14 bits to express the address that corresponds to

LOC, which is clearly insufficient. If we want to be able to give a complete 32-bit address in the instruction, then the only solution is to

include a second word as a part of this instruction, in which case the additional word can contain the required memory address. A suitable

format is shown in Figure 2.39b. The first word may be the same as in part a of the figure. The second is a full memory address. This

format can also accommodate instructions such as

And #$FF000000,R2

in which case the second word gives a full 32-bit immediate operand. If we want to allow an instruction in which two operands can be

specified using the Absolute addressing mode, for example

Move LOC1,LOC2

then it becomes necessary to use two additional words for the 32-bit addresses of the operands. This approach results in instructions of

variable length, dependent on the number of operands and the type of addressing modes used. Using multiple words, we can implement

quite complex instructions, closely resembling operations in high-level programming languages. The term complex instruction set

computer (CISC) has been

used to refer to processors that use instruction sets of this type.

There exists a radically different alternative to this approach. If we insist that all instructions must fit into a single 32-bit word, it is not

possible to provide a 32-bit address or a 32-bit immediate operand within the instruction. But, it is still possible to define a highly functional

instruction set, which makes extensive use of the processor registers. Thus, we can have

Add R1,R2

but not

Add LOC,R2

Instead of the latter instruction, we can use

Add (R3),R2

provided that we load the address LOC into register R3 before the instruction is executed. In this case, register R3 is being used as a pointer

to the desired memory location. This raises the issue of how to load a 32-bit address into a register that serves as a pointer to memory

locations. One possibility is to direct the assembler to place the desired address in a word location in a data area close to the program. Then

the Relative addressing mode can be used to load the address. This assumes that the index field contained in the Load instruction is large

enough to reach the location containing the desired address. Another possibility is to use logical and shift instructions to construct the

desired 32-bit address by giving it in parts that are small enough to be specifiable

using the Immediate addressing mode. This issue is considered in more detail for the ARM processor in Chapter 3. All ARM instructions

are encoded into a single 32-bit word.

The restriction that an instruction must occupy only one word has led to a style of computers that have become known as reduced

instruction set computers (RISC). The RISC approach introduced other restrictions, such as that all manipulation of data must be done on

operands that are already in processor registers. This restriction means that the above addition would need a two-instruction sequence

Move (R3),R1

Add R1,R2

If the Add instruction only has to specify the two registers, it will need just a portion of a 32-bit word. So, we may provide a more powerful

instruction that uses three operands

Add R1,R2,R3

which performs the operation

R3 ← [R1] + [R2]

A possible format for such an instruction is shown in Figure 2.39c. Of course, the processor has to be able to deal with such three-operand

instructions. In an instruction set where all arithmetic and logical operations use only register operands, the only memory references are

made to load/store the operands into/from the processor registers.

ARITHMETIC Addition & Subtraction of Signed numbers

The following fig shows the logic truth table for the sum and carry-out functions for adding equally weighted

bits Xj and Yj in two numbers X and Y. The figure also shows logic expressions for these functions, along

with an example of addition of the 4-bit unsigned numbers 7 and 6. Note that each stage of the addition

process must accommodate a carry-in bit. We use Cj to represent the carry-in to the ith stage, which is the

same as the carry-out from the (i -1)st stage.

The logic expression for Sj in Fig can be implemented with a 3-input XOR gate & the carry-out function,

Cj+l, is implemented with a two-level AND-OR logic circuit. A convenient symbol for the complete circuit

for a single stage of addition, called afull adder (FA), is also shown in the figure.

A cascaded connection of n full adder blocks, as shown in Fig b, can be used to add two n-bit numbers.

Since the carries must propagate, or ripple, through this cascade, the configuration is called an n-bit

s
i =

c
i +1 =

13

7
+ Y

1

0
0
0
1
0

1

1

0
0
1
1
0

1
1

0

0
1
1
0
1
0
0
1

0

0

0

0

1

1

1

1

0
0
0
0
1
1
1
1

E xample:

1
0 = = 0

0
1 1

1
1 1 0 0

1

1 1 1 0
Legend for stage i

x
i y

i Carry-in c
i Sum s

i Carry-out c
i +1

X

Z
+ 6 0 +

x
i

y
i

s
i

Carry-out
c

i +1
Carry-in

c
i

x
i y i c i x

i y i c i x
i y i c i x

i y i c i x i y i c i   = + + +
y

i c i x
i c i x

i y i + +

ripple-carry adder.

The carry-in, Co, into the least-significant-bit (LSB) position provides a convenient means of adding 1 to a

number. For ex, forming the 2's-complement of a number involves adding 1 to the 1's-complement of

the number. The carry signals are also useful for interconnecting k adders to form an adder capable of

handling input numbers that are kn bits long, as shown in Fig. c.

ADDITION / SUBTRACTION LOGIC UNIT

The n-bit adder in following Fig can be used to add 2's-complement numbers X and Y, where the Xn-l and

Yn-l bits are the sign bits. Overflow can only occur when the signs of the two operands are the same

In order to perform the subtraction operation X –Y on 2's-complement numbers X and Y, we form the 2's-

complement of Y and add it to X. The logic circuit network shown in Fig. can be used to perform either

addition or subtraction based on the value applied to the Add/Sub input control line, This line is set to 0 for

addition, applying the Y vector unchanged to one of the adder inputs along with a carry-in signal, Co, of O.

When the Add/Sub control line is set to 1, the Y vector is 1 's-complemented by the XOR gates and Co is

set to 1 to complete the 2's-complementation of Y

Add/Sub
control

n-bit adder

xn 1- x1 x0

cn

sn 1- s1 s0

c
0

yn 1- y1 y0

Figure 6.3. Binary addition-subtraction logic network.

Design of Fast Adders

The n bit ripple carry adder has much delay in developing its outputs, So to Sn-1 & Cn.The delay through a

network of logic gates depends on the integrated circuit electronic technology and on the number of gates

in the paths from inputs to outputs. The delay through any combinational logic network constructed from

gates in a particular technology is determined by adding up the number of logic-gate delays along the

longest signal propagation path through the network. In the case of the n-bit ripple-carry adder, the longest

path is from inputs xo, Yo, and Co at the LSB position to outputs Cn and Sn-1 at the most-significant-bit

(MSB) position.

Using the n bit ripple carry adder Cn -1 is available in 2(n-1) gate delays, and Sn-1 is correct one XOR gate

delay later. The final carry-out, Cn, is available after 2n gate delays. Therefore, if a ripple-carry ad er is used

to implement the addition/subtraction unit, all sum bits are available in 2n gate delays.

Two approaches can be taken to reduce delay in adders.

The first approach is to use the fastest possible electronic technology in implementing the ripple-carry logic

design.

 The second approach is to use an augmented logic gate network structure that is larger than that of ripple

carry adder. We will describe second approach in the next section.

Carry –Lookahead Addition

A fast adder circuit must speed up the generation of the carry signals. The logic expressions for Si (sum) and

Ci+l (carry-out) of stage i are

Si = Xi  Yi  Ci

and

Ci+l = XiYi + XiCi + YiCi

Factoring the second equation into

Ci+l = XiYi + (Xi + Yi)Ci

we can write Ci +1 = Gi + PiCi

where Gi =XiYi and Pi =Xi +Yi

The expressions Gi and Pi are called the generate and propagate functions for stage i. If the generate

function for stage i is equal to 1, then Ci+l = 1, independent of the input carry, Ci. This occurs when both Xi

and Yi are 1. The propagate function means that an input carry will produce an output carry when either Xi is

1 or Yi is 1. All Gi and Pi functions can be formed independently and in parallel in one logic-gate delay after

the X and Y vectors are applied to the inputs of an n-bit adder. Each bit stage contains an AND gate to form

Gi, an OR gate to form Pi, and a three-input XOR gate to form Si. A simpler circuit can be derived by

observing that an adequate propagate function can be realized as Pi = Xi  Yi, which differs from Pi =.Xi + Yi

only when Xi = Yi = 1. But, in this case Gi = 1, so it does not matter whether Pi is 0 or 1. Then, using a 1

cascade of two 2-input XOR gates to realize the 3-input XOR function, the basic cell B in Fig can be used in

each bit stage.Expanding Ci in terms of i -1 subscripted variables and substituting into the Ci +1 expression,

we obtain Ci+1 = Gi + PiGi-1 + PiPi-lCi-1

Continuing this type of expansion, the final expression for any carry variable is

C i+l=G i+ PiGi-l+ PiPi-1Gi-2+ .,. +PiPi-l,.,P1GO+PiPi-l........P0C0

Thus, all carries can be obtained three gate delays after the input signals X, Y, and Co are applied because

only one gate delay is needed to develop all Pi and Gi signals, followed by two gate delays in the AND-OR

circuit for Ci + 1. After a further XOR gate delay, all sum bits are available. Therefore, independent of n, the

n-bit addition process requires only four gate delays.Let us consider the design of a 4-bit adder. The carries

can be implemented as

C1 = Go + P0C0

C2 = G1 + P1G0 + P1P0C0

C3 = G2 + P2G1 + P2P1 G0 + P2P1 P0C0

C4 = G3 + P3G2 + P3P2G1 + P3 P2P1 G0 + P3P2P1P0C0

The complete 4-bit adder is shown below. The carries are implemented in the block labeled

carry look ahead logic. An adder implemented in this form is called a carry-lookahead adder. Delay through

the adder is 3 gate delays for all carry bits and 4 gate delays for all sum bits. In comparison, note that a 4-bit

ripple-carry adder requires 7 gate delays for S3 and 8 gate delays for C4.

Carry-lookahead logic

4-bit adder 4-bit adder 4-bit adder 4-bit adder

s 15-12

P 3
I

G 3
I

c 12

P 2
I

G 2
I

c 8

s 11-8

G 1
I

c 4

P 1
I

s 7-4

G 0
I

c 0

P 0
I

s 3-0

c 16

x 15-12 y 15-12 x 11-8 y 11-8 x 7-4 y 7-4 x 3-0 y 3-0

.

G 0
II

P 0
II

MULTIPLICATION OF POSITIVE NUMBERS

The usual algorithm for multiplying integers by hand is illustrated in fig. for the binary system. This

algorithm applies to unsigned numbers and to positive signed numbers. The product of two n-digit

numbers can be accommodated in 2n digits, so the product of the two 4-bit numbers in this example fits

into 8 bits. In the binary system, multiplication of the multiplicand by one bit of the multiplier is easy. If the

multiplier bit is 1, the multiplicand is entered in the appropriate position to be added to the partial product.

If the multiplier bit is 0, then 0s are entered.

Binary multiplication of positive operands can be implemented in a Combinational,

two-dimensional logic array, as shown in Fig. The main component in each cell is a

full adder FA. The AND gate in each cell determines whether a multiplicand bit, m j,

is added to the incoming partial-product bit, based on the value of the multiplier bit

qi.each row i, where 0<i<3, adds the multiplicand to the incomming partial prodoct

if qi = 1. If qi = 0, PPi is passed vertically downward unchanged. PP0 is all 0s, and

PP4 is the desired product. The multiplicand is shifted left one position per row by

the diagonal signal path.

This Two dimensional logic array for mutiplication is suitable only when the numbers

are small. So, when we consider long numbers, we are using add & shift method.

ADD & SHIFT METHOD

In this method, three the following 4 registers are used.

1. Register Q for storing Multiplier.

2. Register M for storing Multiplicand.

3. Register C for storing Carry.

4. Register A for temporary storage.(initially set to 0)

The h/w for for implementing add & shift method is shown in the fig. Initially,

registers A & C are set to 0 & Register Q is loaded with multiplier & register M is

loaded with Multiplicand.

Steps: Do n times

1. If the LSB of register Q is 1, then add M to A storing the result in A & shift C,A

& Q in parallel right one binry position.

2. If the LSB of register Q is 0, then shift C,A & Q in parallel right one binry

position.

b).

Booth algorithm

• A powerful algorithm for signed number multiplication.

• It genaretes 2*n bit product.

• It treats both +ve & -ve numbers uniformly.

• The Booths technique for recording multiplier is shown below.

Bit i Bit i-1 Selected bit For multiplicant

0 0 0

0 1 + 1

1 0 - 1

1 1 0

ex :

 1. + 13 01101 01101

 - 06 * 11010 0-1+1-10

 000000000

 11110011

 0001101

 110011

 00000

 1110110010 (-78)

 2. - 02 11110 11110

 - 02 * 11110 000-10

 000000000

 00000010

 0000000

 000000

 00000

100 (+04)

101

 3. + 13 01101 01101

 + 09 * 01001 1-10+1-1

 111110011

 00001101

 0000000

 110011

 01101

 001110101 (-78)

Fast Multiplication

• A technique for speeding up of multiplication operation.

• It guarantees that the Max. number of summands that must be added is n/2

for n bit operands.

• This technique is called as bit pair recording.

For ex: consider multiplication between 13 & -6. By booth algorithm the multiplier –6

is written as

 - 6 sign extension 1 11010 0 Assume

 00-1+1-10

The pair (+1,-1) is equivalent to (0,+1) i.e instead of adding - 1 times the

multiplicand at position i to +1 * M at position i+1,the same result is obtained by

adding +1*M at position i. In this technique two bits are examined at a time &

multiplication is done accordingly.

The following table is used for selecting the bits for multiplier.

Multipliet bit pair Multiplier bit on right selected bit for Q

i+1 i i-1

0 0 0 0

0 0 1 +1

0 1 0 +1

0 1 1 +2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

13 * -6 01101

 0-1-2

 111100110

 1110011

 00000

 1110110010

Integer Division

The following fig implements the restoring division technique.

An n-bit positive divisor is loaded into register M and an n-bit positive dividend is loaded into register Q at the

q
n 1 -

m
n 1 -

-bit

Divisor M

Control
sequencer

Dividend Q

Shift left

adder

a
n 1 - a

0 q
0

m
0

a
n

0

Add/Subtract

Quotient
setting

n 1 +

A

start of the operation. Register A is set to 0. After the division is complete, the n-bit quotient is in register Q

and the remainder is in register A. The required subtractions are performed by using 2's-complement

arithmetic. The extra bit position at the left end of both A and M accommodates the sign bit during

subtractions.

The following algorithm performs restoring division.

Do the following n times:

1. Shift A and Q left one binary position.

2. Subtract M from A, and place the answer back in A.

3. If the sign of A is 1, set qo to 0 and add M back to A (that is, restore A); otherwise, set qo to 1.

A restoring division example : 8/3

M = 00011

 A Q

 00000 1000

 Shift 00001 000

 Sub 11101

 Set q0 11110 0000 First Cycle

 Restore 00011

 00001 0000

Shift 00010 000

 Sub 11101

 Set q0 11111 0000 Second cycle

 Restore 00011

 00010 0000

Shift 00100 000

 Sub 11101 Third Cycle

 Set q0 00001 0001

Shift 00010 001

 Sub 11101

 Set q0 11111 0010 Fourth Cycle

 Restore 00011

 00010 0010

 Remainder Quotient

Non Restoring Division

The following algorithm gives the steps for nonrestoring division.

Step 1: Do the following n times:

1. If the sign of A is 0, shift A and Q left one bit position and subtract M from

A; otherwise, shift A and Q left and add M to A.

2. Now, if the sign of A is 0, set qo to 1; otherwise, set qo to O.

 Step 2: If the sign of A is 1, add M to A.

Ex : 8/3

M = 00011

 A Q

 00000 1000

 Shift 00001 000

 Sub 11101 First Cycle

 Set q0 11110 0000

Shift 11100 000

 Add 00011 Second cycle

 Set q0 11111 0000

 Shift 11110 000

 Add 00011 Third Cycle

 Set q0 00001 0001

Shift 00010 001

 Sub 11101 Fourth Cycle

 Set q0 11111 0010

 Add 00011

 00010 0010

 Remainder Quotient

Floating point numbers & Operations

Consider two floating point numbers

6.0247 x 1023 & 6.6254 x 10-27

Hence, we need to easily accommodate both very large integers and very small fractions. To do this, a

computer must be able to represent numbers and operate on them in such a way that the position of the

binary point is variable and is automatically adjusted as computation proceeds. In such a case, the binary

point is said to float, and the numbers are called floating-point numbers. This distinguishes them from fixed-

point numbers, whose binary point is always in the same position.

Because the position of the binary point in a floating-point number is variable, it must be given explicitly in

the floating-point representation.These numbers consists of five significant digits. The scale factors (1023 &

10-27) indicate the position of the decimal point with respect to the significant digits. By convention, when the

decimal point is placed to the right of the first (nonzero) significant digit, the number is said to be normalized.

We can define a floating-point number representation as one in which a number is represented by its sign, a

string of significant digits, commonly called the mantissa, and an exponent to an implied base for the scale

factor.

The format for representing floating point number is shown below.

 32 bits

 0 --- +ve

 1 --- -ve

 Ex : + 0.001...................... * 2 9(unnormalized)

S 7 bit Signed Exponet 24 bit Mantissa

0 0001001 001...

 + 0.1......................... * 27(Normalized)

ARITHMETIC OPERATIONS ON FIOATING POINT NUMBERS

Add/Subtract Rule

1. Choose the number with the smaller exponent and shift its mantissa right a number

 of steps equal to the difference in exponents.

 2. Set the exponent of the result equal to the larger exponent.

 3. Perform addition/subtraction on the mantissas and determine the sign of the result.

 4. Normalize the resulting value, if necessary.

Ex : Addition

 2.9400 * 102 0.0294 * 104

 4.3100 * 104 + 4.3100 * 104

 4.3394 * 104

 Subtraction

 2.9400 * 102 0.0294 * 104

 4.3100 * 104 - 4.3100 * 104

 - 4.2806 * 104

Multiply Rule

1. Add the exponents.

2. Multiply the mantissas and determine the sign of the result.

3. Normalize the resulting value, if necessary.

Ex: 720.56 * 103 * 420.66 * 105 = 303110,7696 * 10 8

0 0000111 1...

Divide Rule

1. Subtract the exponents.

2. Divide the mantissas and determine the sign of the result.

3. Normalize the resulting value, if necessary.

Ex: 720.56 * 103 / 420.66 * 105 = 1.7129* 10 -3

The floating point addition & subtraction unit is shown the fig.

The first step is to compare exponents to determine how far to shift the mantissa of the number with the

smaller exponent. The shift-count value, n, is determined by the 8-bit subtractor circuit in the upper left

corner of the figure. The magnitude of the difference Ea -Eb, or n, is sent to the SHIFTER unit. The sign of

the difference that results from comparing exponents determines which mantissa is to be shifted.

Therefore, in step 1, the sign is sent to the SWAP network in the upper right corner of Fig. If the sign is 0,

then Ea>Eb and the mantissas MA and MB are sent straight through the SWAP network. This results in MB

being sent to the SHIFTER, to be shifted n positions to the right. The other mantissa, MA, is sent directly to

the mantissa adder/subtractor. If the sign is 1, then Eb > Ea and the mantissas are swapped before they

are sent to the SHIFTER.

Step 2 is performed by the two-way multiplexer, MUX, near the bottom left comer of the fig. The exponent

of the result, E', is tentatively determined as Ea if Ea> Eb, or Eb if Eb > Ea, based on the sign of the

difference resulting from comparing exponents in step 1.

Step 3 involves the major component, the mantissa adder/subtractor in the middle of the figure. The

CONTROL logic determines whether the mantissas are to be added or subtracted. This is decided by the

signs of the operands (SA and SB) and the operation (Add or Subtract) that is to be performed on the

operands. The CON TROL logic also determines the sign of the result, SR.

Step 4 of the Add/Subtract rule consists of normalizing the result of step 3, mantissa M. The number of

leading zeros in M determines the number of bit shifts, X, to be applied to M. The normalized value is

truncated to generate the 24-bit mantissa, MR, of the result. The value X is also subtracted from the

tentative result exponent E' to generate the true result exponent, Er

IEEE Standard for Floating-point numbers

• This standard was developed by the Institute of Electrical & Electronics

Engineers(IEE).

• This standard was developed in order to provide the portability for

numerically oriented programs.

• This standard was developed to encourage the development of high quality

software.

The basic format sizes are :

• 32 bit (Single Precision Format)

• 64 bit (Double Precision Format)

The format for single precison number is shown below.

 32 bits

 0 --- +ve

 1 --- -ve

 Value represented = + 1.M * 2 E1 -127

The sign of the number is given in the first bit, followed by a representation for the exponent (to the base 2)

of the scale factor. Instead of the signed exponent, E, the value actually stored in the exponent field is an

unsigned integer E' = E + 127.This is called the excess-127 format. Thus, E' is in the range 0 <= E'<= 255.

The last 23 bits represent the mantissa. Since binary normalization is used, the most significant bit of the

mantissa is always equal to 1. This bit is not explicitly represented; it is assumed to be to the immediate left

of the binary point. Hence, the 23 bits stored in the M field actually represent the fractional part of the

mantissa, that is, the bits to the right of the binary point. An example of a single-precision floating-point

number is shown below. Ex: +1.001010.................* 2 -87

The format for double precision number is shown below.

 64 bits

 0 --- +ve

 1 --- -ve

 11 bit excess –1023 exponent

 Value represented = + 1.M * 2 E1 -1023

S 8 bit Signed Exponet(E1) 23 bit Mantissa

M

0 00101000(40) 001010.........................

S 11 bit Signed Exponet(E1) 52 bit Mantissa

M

BASIC PROCESSING UNIT

FUNDAMENTAL CONCEPTS

 The instructions of a program are loaded in sequential locations in main memory. To

execute a program, processor fetches one instruction at a time and performs the

operations specified. The processor keeps track of the address of the memory

location containing the next instruction using a dedicated register, called the

program counter (PC). After fetching an instruction, the contents of PC are updated

to point to the next instruction in the sequence. A branch instruction loads a new

address into the PC.

 Let us assume an instruction of 4 bytes and stored in one memory word. To execute an instruction, the

processor has to perform the following 3 types:

1. Fetch the contents of the memory location pointed to by the PC. The contents of this location

are interpreted as instruction to be executed. They are loaded into another special purpose

register is called instruction register (IR). Symbollically, this operation is denoted as

 IR [PC].

2. Since , the memory is byte addressable, increment the contents of the PCby 4 to get the next

word in the memory. PC PC+4

3. Carryout the actions specified by the instruction in the IR.

If the instruction occupies more than one word, step 1and 2 must be repeated so as to fetch the complete

instruction. These two steps are usually referred as fetch phase; step 3 constitutes the execution phase.

To know how these operations are implemented, we need to know the internal structure of the processor.

The various functional blocks of the CPU can be organized and interconnected in a variety of ways. The

following Fig. shows a simple organisation in which the arithmetic and logic unit(ALU) and all the registers

are connected using a single common bus. This bus is internal to the processor.

The data and address lines of the external memory bus are connected to the internal processor bus via

memory data register(MDR)and the memory address register(MAR).This is also shown in fig. Data may be

loaded into MDR either from the memory bus or from internal processor bus. Data stored in MDR may be

placed on either bus.The input of the MAR is connected to the internal bus and its output is connected to the

external bus.The control lines of the memory bus are connected to the instruction decoder and control logic

block. This unit is responsible for issuing the signals that control the operation of all the units inside the

processor and for interacting with the memory bus.

The number and function of processor register R0 through R(n-1) vary from processor to processor.Some

may be general purpose; others may special purpose like stack pointer or index registers.Three registers Y,Z

& TEMP are transparent to the programmmer ,i.e, they are never referred directly by an instruction.They are

used by the processor for temporary storage during execution of some instructions. The multiplexer MUX

selects either the output of the register Y or a constant value 4.This is provided as input A of the ALU.The

constant is used to increment the contents of PC. The B input of the ALU is obtained directly from the

processor bus. Thus, the ‘select’ line of MUX can be either select4 or select Y. The registers, the ALU and the

inter connecting bus are collectively referred to as ‘data path’.

Generally an instruction can be executed by performing one or more of the following operations in some

specified sequence:

1.Transfer a word of data from one processor register to other or to the ALU.

2.Perform an arithmetic or logic operation and store the result in a processor register.

3.Fetch the contents of a given memory location and load them into a processor

 register.

4.Store a word of data from processor register into a given memory location

Register gating and timing of data transfers

 Instruction execution involves sequence of steps in which data are transferred from one register to

another. For each register, two control signals are used to place the contents of that register on the bus or to

load the data on the bus into the register . The input and output of register Ri are connected to the bus via

switches controlled by the signals Riin and Riout.These are also called gating signals. This is shown in the

following fig. When Riin is set to 1, the data on the bus are loaded into Ri and when Riout is set to 1,the

contents of Ri are placed on the bus. When Riout or Riin is 0,data cannot be transferred between the processor

bus and registers.

Register transfers

Consider an example of transferring data from register R1 to R4.The following actions are needed:

1.Enable the output of register R1 by making R1out=1.This places the contents of R1 on the processor

bus.

2.Enable the input of register R4 by setting R4in=1. This loads the data from the internal bus into

register R4.

Performing an arithmetic or logic operation

The ALU is a combinational circuit which performs arithmatic and logic operations on two operands applied

to its A and B inputs. One of the operands is the output of the MUX and other operand is obtained directly

from the processor bus. The result is stored temporarily in register Z.

Consider an example of adding the contents of register R1 to R2 and storing the result in R3. The sequence

of operations are:

1. R1out,Yin ;Transfers the contents of R1 to Y register

2. R2out, select Y,Add,Zin ;R2 contents are transferred directly to ALU B

 input.The numbers are added & Result is stored in

 register Z.

3. Zout,R3in ;Sum is transferred to register R3.

The signals are activated for the duration of the clock cycle corresponding to that step, with all other signals

deactivated during that time .

In step 1, output of register R1 and inputs of register Y are enabled, causing the contents of R1 to be

transferred via the bus to Y register.

In step 2, select Y signal of MUX is selected, so the contents of Y register is transferred to input A of the ALU.

Also, contents of R2 are gated onto the bus and to the input B of ALU.The add control signal of ALU is set ,

and hence addition is performed. The result is moved into register Z since Zin=1.

In step 3, cotents of Z are transferred to destination register R3 using Zout and R3in signals. This is an

additional step, since only one register output can be enabled during a clock cycle in a single bus structure.

Fetching a word from memory

To fetch any information (instruction or operand) from memory, the processor has to specify the address of

memory location where this word is stored and issue aread control signal. The processor transfers the

required address to MAR from PC. The output of MAR is connected to the address lines of the memory bus.

The processor uses the control lines of the memory bus to indicate that a read operation is needed.The

processor usually waits until it receives an indication from the memory that the requested read operation

has been completed. A signal called memory function completed[MFC] is used for this purpose . The

memory sets this signal to 1 to indicate that the content of the addressed location are available on the data

lines of the memory bus. Now, the CPU reads the information into MDR, from where it can be transferred to

other registers in the processor.

Let us assume that register R1 is having the address of the memory location to be accessed and the

information from that memory location is to be loaded into register R2. the operation instruction is move

(R1),R2.

The sequence of steps are:

 1. MAR [R1]

2. Start a memory read operation

3. Wait for MFC signal from memory

4. Load MDR from external bus

5. R2 [MDR]

Consider that the output of MAR is enabled all time. When a new address is loaded into MAR, it will appear

on the memory bus at the begining of next clock cycle as shown in fig.

A read control signal is activated at the same time MAR is loaded. While waiting for a response from

memory. MDRinE signal can be activated.Thus, the information received from memory are loaded into MDR

at the end of clock cycle in which the MFC signal is received . In the next cycle, MDRout is activated to

transfer the data to register R2. Therfore a memory location read operation requires three steps described

by the sequence as below.

1. R1out, MARin,Read

2. MDRinE, WMFC

3. MDRout,R2in

Where WMFC is the control signal that causes the processor’s control circuitary to wait for the arrival of MFC

signal.

Storing a word in memory

The procedure is as follows: The desired address is loaded into MAR. Then, the data to be written is loaded

into MDR and a write command is issued. Consider,for example, that the data is in register R2 and the

address of the memory location (where data is to be stored)is in register R1. Then, to store the contents of

register R2 in memory, the instruction is move R2 ,(R1). This requires the following three steps:

1. R1out,MARin

2. R2out, MDRin,Write

3. MDRoutE, WMFC

The operation specified by any instruction is implemented in two phases: fetch phase and execute phase.

The fetch phase always requires three steps. The number of steps for execute phase will vary depending on

the type of operation. This is illustrated in examples below.

Write the complete control sequence

for the instruction move(Rsrc),Rdst

Solution : This instruction copies the contents of memory location pointed to by Rsrc into Rdst. This is

memory read operation. This will require the following actions

1. Fetch the instruction

2. Fetch the operand(the contents of the memory location pointed to by Rsrc)

3. Transfer the data to Rdst

The control sequence is written below.

1. PCout,MARin,Read,Select 4,Add,Zin

2. Zout,Pcin,Yin,WMFC

3. MDRout,IRin

4. Rsrc out,MARin,Read

5. MDRin,WMFC

6. MDRout,Rdst in,End.

Execution of a complete instruction

Consider , for example, the execution of the instruction Add(R3),R1

This instruction adds the contents of a memory location pointed by R3 to the contents of a register R1 and

places the result in R1. Following actions are needed:

1. Fetch the instruction

2. Fetch the first operand from memory

3. Perform addition

4. Store the result in R1.

The following sequence of control steps are required to perform these operations for the single bus structure.

1. PCout,MARin,Read,Select 4,Add,Zin

2. Zout,Pcin,Yin,WMFC

3. MDRout,Irin

4. R3 out,MARin,Read

5. R1out,Yin,WMFC

6. MDRout,Select Y, Add,Zin

7. Zout,R1in,End.

Step 1 : Fetch operation is initiated by loading the address in PC into MAR and

Sending a read request to memory. Select signal is set to select4, which

causes the MUX to select constant 4. This value is added to the operand at input b

(contents of PC) and the result is store in register Z.

 Step 2 : The update value in Z is moved to PC(to point to the next address)

 While waiting for the memory to respond.

 Step 3 : Once MFC signal is received from memory, the fetched instruction will

 Be moved into MDR and then to IR.

These three steps constitute instruction fetch phase.

 Step 4 : The instruction decoding circuit interprets the contents of IR and the

 Processor starts the execution phase. Contents of R3(address of the

 Operand) are loaded into MAR and a read signal is issued

 Step 5 : While waiting for the memory to respond, contents of R1 are transferred

 Into Y register.

 Step 6 : The memory provides data on the bus, which is moved into MDR and

 Onto the B input of the ALU. The contents of Y (R1 contents) are

 Gated into the A input of ALU using select Y signal of MUX.Add

 Control aignal is activated.After the addition , the result is transferred to Z.

 Step 7 : Finally, the sum is moved out of register Z into register R1. The end

 Signal causes a new instruction fetch cycle to begin by returning to

 step1

Note: 1.The signal Yin in step 2 is required to save PC address while computing branch target address.

Write the control sequence to execute the instruction

 Add(R3)+,R1

Solution : This instruction adds the contents of memory loction pointed to by R3, to

register R1. R3 is also incremented.

The control sequence is written below.

1. PCout,MARin,Read,Select 4,Add,Zin

2. Zout,Pcin,Yin,WMFC

3. MDRout,Irin

4. R3 out,MARin,Read,Select 4, Add,Zin

5. Zout,R3in

6. R1out,Yin,WMFC

7. MDRout,Select Y, Add,Zin

8. Zout,R1in,End.

Branch instructions

A branch instruction replaces the contents of PC with the branch target address. This address is obtained by

adding an offset X which is given in the brach instruction,to the current value of PC. Branch instructions can

be of two types: unconditional and conditional. The following Fig. shows the control sequence to implement

an unconditional branch instruction.

1. PCout,MARin,Read,Select 4,Add,Zin

2. Zout,Pcin,Yin,WMFC

3. MDRout,IRin

4. Offset-field of IRout,, Add,Zin

5. Zout,PCin,End.

The fetch phase ends in step 3. The offset value is extracted from the IR by the instruction decoding circuit.

Since the updated value of PC is already available in register Y, the offset X is gated on to the bus in step 4,

and addition operation is performed to compute the new target address. Finally, in step 5 this target address

is moved into PC.

The offset X is the difference between the branch target address and the address immediately following the

branch instruction. For example, if th ebranch instruction is at location 1000 and branch target address is

1100,then the value of X must be 96, since the PC will be containing the address 1004 after fetching the

instruction at location 1000.

Let us consider a conditional branch. Before the branching takes place, the states of the condition codes are

verified. For example, if we want to implement a Branch-on-negative instruction, then step 4 is changed to

Offset-field-of-IRout, Add, Zin, If N=0, then End.

Thus, if N=0,processor returns to step 1 to perform a new fetch operation. If N=1, step 5 is performed to

load a new value into PC and branching takes place.

Multiple bus organization

The following Fig. shows three-bus organization of the CPU. All general purpose registers are combined into

a single block called register file. The register file has three parts: two outputs allowing the contents of two

different registers to be simultaneously placed on the buses A and B. The third part allows the data on bus C

to be loaded into a third register during the same clock cycle.

 Buses A and B can transfer two source operands to A and B inputs of the ALU. The

result is transferred to the destination over C bus during the same cycle. Therefore,

a three address instruction of the form OP Rsrc1, Rsrc2,Rdst can be executed in one

clock cycle after the fetch phase. Therefore, there is no need for temporary registers

Y and Z .

Another feature is the provision for increment or unit to update the value of PC, which eliminates the need to

add 4 to PC using the ALU.

Consider a three operand instruction

 Add R1,R2,R3

The control serquence is shown below.

1. Pcout,R=B,MARin,Read,Inc PC

2. WMFC

3. MDRout,R=B,IRin

4. R1out,R2out,Select A,Add,R3in,End.

Step 1 : Contents of PC are passed through ALU using R=B control signal and loaded into MAR to

start a memory read operation.PC is incremented by 4 to point to the next instruction in the

sequence.

Step 2 : Processor waits for MFC signal from memory.

Step 3 : The instruction code is received in MDR and transferred to IR.This completes the fetch

phase.

Step 4 : The instruction is decoded and the add operation takes place in single step.

A complete processor

 The design objective for any processor is to reduce the number of clock cycles required to execute an

instruction. Ideally, we expect an operation to be completed in one cycle. Towards this goal, instead of a

single bus structure, we designed a multi bus structure.

Performance improvement can also be achieved if fetch and execute phases can be overlapped. Latest

processors include an instruction unit, which fetches many instructions in advance and places them in a

ready queue. Other enhancement includes having multiple functional units such as integer unit and floating

point unit which operate on respective type of data in parallel. A powerful processor can be designed using

the structure shown below.

 As shown, the processors may have separate instruction cache and data cache for storing instructions and

operands. Only if information is not available in cache, processor has to access the main memory.

The processor is connected to the system bus and to the memory by means of a bus interface. Using

multiple units and pipelining, it is possible to design very powerful processors. Processors that execute

instructions at a rate exceeding one instruction per clock cycle are called super scalar processors.

Hardwired control

To execute the instructions, the processor must generate control signals in a proper sequence. Cconsider the

sequence of control signals Add(R3),R1. Seven non overlapping time slots are required for executing the

instruction. Each step is completed in one clock period. Hence, to ensure proper operation of the processor,

efficient design of control unit is very much necessary. The control design approaches fall into two categories:

1. Hardwired control and

2. Microprogrammed control

The following fig shows the organization of the hardwired control unit.

Since each step in the sequence is performed in one clock cycle, a counter driven by a clock signal, CLK, can

be used to keep track of the control steps. The required control signals are determined by the following

information:

1. Contents of control step counter

2. Contents of instruction register

3. Contents of condition code flags

4. External input signal, such as MFC, and interrupt requests.

The encoder block is a combinational circuit that generates required control outputs,

depending n the state of all its inputs. The step decoder provides a seperate signal

line for each step in the control sequence. The output of the instruction decoder

consists of a separate line for each machine instruction. For any instruction loaded in

IR, one of the output lines INS1 through INSm is set to 1 & all other lines are set to

0. The input signals to the encoder block are combined to generate individual

control signals Zin,Add,PCout and so on.

An example of generating a control signal Zinis shown below. The logic function is

Zin=T1+T6.ADD+T4.BR+........ ..

External
inputs

Encoder

Reset
CLK

Clock

Control signals

counter

Run End

Condition

codes

decoder

Instruction

Step decoder

Control step

IR

T 1 T 2 T
n

INS 1

INS 2

INS m

The signal Zin is asserted during time slot T1 for all instructions, T6 during an Add instruction and so on.

Similarly, the End control signal is generated from the logic function,

END=T7.ADD+T5.BR+(T5.N+T4. N).BRN+......

The hardware to generate the End signal is shown below.

T
1

Add Branch

T
4 T

6

Figure 7.13.Generation of the End control signal.

T7

Add Branch
Branch<0

T5

End

NN

T4T5

Microprogrammed control

Here control signals are generated by a program similar to machine language programs. Following

terminologies are used in this technique.

Control word

A control word, CW, is a bit pattern of 0s and 1s. Individual bits a control word represent the various control

signals like Add, End, Zin and so on. Each of the control sequence of an instruction defines a unique

combination of 1s and 0s in the control word. The control words correspond to the 7 steps of add (R3),R1

are shown below.

 A particular bit is set to 1 in any step, if the corresponding signal appears in that step.

Microinstruction

Individual control words are also referred to as microinstruction.

Micro routine

A sequence of control words corresponding to the control sequence of a machine instruction constitutes the

microroutine.

Control store

The microroutine for all instructions in the instruction set of a computer are stored in a special memory called

control store.

PC

in

PC

out M

AR

in

Rea

d

M

DR

out

IR

in

Y

in
Sele

ct
Ad

d Z

in

Z

out

R1

out

R1

in

R3

out W

MF

C

End

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Organization of microprogrmmed control unit

 A basic structure of the microprogrammed control unit is shown below. The control

unit can generate control signals for any instruction by sequentially reading the

control words of the corresponding microroutine from the control store. To read

sequentially, a microprogram counter(mPC) is used.Everytime a new instruction is

loaded into IR, the output of the block labeled “starting address generator” is loaded

into microprogram counter. Then, microprogram counter is automatically

incremented for each successive instruction fetch. Hence, control signals are

delivered to various parts of the processor in the correct sequence.

The basic organization discussed above cannot handle unconditional or conditional

branching. So, we have to use branch microinstructions. These microinstructions

specify the branch address. They also indicate which external inputs, conditional

codes or bits of the IR should be checked as a condition for branching.

For example, the instruction, branch<0 (branch-on-negative) can be implemented by

a micro routine shown below.

0. PCout,MARin,Read,Select 4,Add,Zin

1. Zout,Pcin,Yin,WMFC

2. MDRout,Irin

3. Branch to starting address of appropriate microroutine

..

40. If N = 0 ,then branch to microinstruction 0

41. Offset field of Irout,Select Y, Add, Zin

42. Zout,Pcin,End.

After loading this instruction into IR, a branch microinstruction transfers control to the corresponding

microroutine starting at some location,(say 40) in the control store. This address is the output of the starting

address generator block. A microinstruction at location 40 checks the N bit of the condition code. If this

bit=0, a branch takes place to location 0 to fetch a new machine instruction. Otherwise, the next instruction

at location 41 is executed to put the branch target address into register Z.

The modified control unit is shown below.

Starting & branch address generator block accepts inputs from external inputs,

condition codes as well as from IR.In this CU, the Mpc is incremented every time a

new instruction is fetched from control store, except in the following cases:

1. When a new instruction is loaded into IR, the Mpc is loaded with the starting

address of the microroutine for that instruction.

2. When a branch microinstruction is encountered and branch condition is

satisfied , the Mpc is loaded with the branch address.

3. When an End microinstruction is encountered, thr Mpc is loaded with the

address of first CW in microroutine for fetch cycle.

Microinstruction Format:

A simple way to charectarize microinstructions is to assign a one bit position to each

control signal in CW. This results in long Control words sinse the number of control

signals required for an application may be large. Also , only a few bits in the CW are

set to 1 & other bits are set to 0.

Let us assume that the processor contains 4 GPRs, so 8 gating signals are required

just to transfer the data IN & OUT of these registers. Other gating signals are

store

Control

generator

Starting

address

CW

Clock  P C

IR

External

Inputs

Condition Codes

required for other register as well. We need to specify ALU functions. Assuming 16

functions like add, sub, ..etc 16 control signals are needed. Finally, additional control

signals like read, write &WMFC etc are also needed. Totallly around 40 control

signals are required. Now the length of CW is 40 bits.Since all bits are not activeted

simultaneously, this leads to inefficient usage of memory space in the control store.

Also if the control signals are more , the CW becomes too long.

To reduce the length of CW, another formatting scheme is used which is based on

the following two inferences.

1. Most of the control signals are not needed simultaneously in any

microinstruction.

2. Many signals are mutually exlusive & hence cannot be activeted concurrently.

Foe ex. The ALU can perform only one function at a time & all functions are mutually

exclusive to each other. Similarly , read & write signals to the memory can not be

activated simultaneously.

Here we are discussing a new encoding scheme, where instructions can be grouped

according to the functions, such that all mutually exclusive signals are in the same

group. So, instead of bit identification we use group identification, which naturally

reduces number of bits required to specify any microinstruction. This is also called as

Field encoding of microinstructions.

 4 3 3 bits 4 2

 0000:Add 00 : No action

 0001:Sub 01 :Read

 02 :Write

 1111: XOR

This structure is based on binary coding scheme. Each field occupies a space large

enough to contain required codes. For ex, the 16 functions of ALU can be specified

using only 4 bits, where as, the earlier scheme 16 bits. Thus, we see that only 20

F1 F2 F3 F4 F5

bits are used to specify around 40 control signals, thus minimizing the space

required in the control store to store the microinstructions. We say that, one micro

operation per group is specified in any microinstruction. But, this type of grouping

require more h/w since bit patterns of each field must be separetely decoded into

individual control signals.

The field encoding tends to provide 2 types of microinstructions:

1. Horizontal

2. Vertical

Vertical organization is higly encoded scheme which reduces the length of control

words. This gives rise to compact codes & specify only a small number of control

functions in each microinstructions.This results in slower operating speeds because

more microinstructions are needed to perform the desired control functions. The

advantage is less h/w is required.

Horizontal organization uses simple encoding scheme & many bits in the

microinstruction. Here many resources can be controlled with a single

microinstruction. This scheme is useful when higher operating speed is desired. Field

encoding is example for this.

Micro program Sequencing

A simple way to charectarize microinstructions is to assign a one bit position to each

control signal in CW. But this scheme has two disadvantages.

1. Requirement of large control store, since each m/c instruction has a separete

microroutine. If the m/c instructions have sevaral addressing modes, a

separete microroutine for each of these combinations may produce

duplication of common parts of the prg. The microprogram should be

organized so that the microroutines share the common parts. This may

require many branch instructions to transfer control among various parts.

This leads to second problem.

2. Program execution time will be longer since more time is required to carry out

the branch instructions.

Let us consider an instruction of the type

Add Src,Rdst

This instruction performs the function of adding the SRC operand to the content of

Rdst & stores the sum in Rdst.We assume that the SRC operand can be specified in

the following addressing modes :

1. Register addressing mode.

2. Auto increment addressing mode.

3. Auto decrement addressing mode.

4. Indexed addressing mode.

The micro program is explained with the help of the following flow chart shown

below. Each box corresponds a microinstruction that controls the transfers &

operations indicated with in the box. The microinstruction is stored at the address

indicated by the number above the top right corner of the box.

Consider the point labelled B(Beta) in flowchart. At this point,a decision is to be

made about branching : if direct mode is specified , instruction at location 170 is

bypassed & control goes to location 171. If indirect mode is specified, then the CW at

location 170 is executed to fetch the operand from memory. This branching is

performed using a technique called bit-ORing.

In this technique, the preceding instructions specify the address 170 & then use an

OR gate to change the least significant bit(LSB) of this address to 1 if direct

addressing mode is specified. This is known is bit-ORing technique.

Microinstruction with next address field

The flowchart contains several branch microinstructions, which perform no useful

operation in the data path. These instructions are needed only to determine the

address of the next microinstruction. More number of such instructions will reduce

the speed of computation. The problem can be solved by modifying the original CU

design built around Mpc. An efficient alternative is to include an address field as part

of every microinstruction to indicate the location next microinstruction to be fetched.

i.e. effectively every microinstruction now behaves like a branch microinstruction.

But this flexibility comes at a cost; additional bits are required in every

microinstruction for the address field. For ex, Consider a computer with 4K

microinstructions, So,12 bits are required for the address field. If the length of CW is

60 bits,1/5 of the control store capacity is to be dedicated to addressing. This

overhead may not be tolerated in some cases.

The main advantage of this scheme is that the need for separate branch

microinstructions is eliminated. Since, each instruction contains the address of the

next instruction, there is no need of a counter to keep track of the addresses. Hence,

Mpc is replaced with a microinstruction address register; this register is loaded from

the next address field of each microinstruction. Thus, a new microprogramming

control structure with microinstruction address register and bit-ORing capability can

now be designed as shown below.

The decoding circuits generate the starting address of a given microroutione on the

basis of opcode in IR.The next address bits are fed through Or gate to

microinstruction address register. The address can be modified depending on the

data in the IR, Condition codes & external inputs.

