DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

Lecture Notes

Course: Computer Organization

Course Code:3CCIO1
Faculty: Prof. Kavitha M

SIDDAGANGA INSTITUTE OF TECHNOLOGY
TUMKUR-3

An Autonomous Institution, Affiliated to VTU, Belagavi & Recognised by AICTE
and Accredited by NBA, New Delhi

Computer Organization

It describes the design and function of various units of digital computer that stores & processes information.
It also deals with the units of the computer that receives the information from extemal sources & sends
computed results to extemal destinations.

Computer : Is a fast electronic calculating machine that accepts digitized input
information , processes it according to the list of internally stored instructions &
produces the resulting output information. The list of internally stored instructions is

called as a Computer program & internal storage is called as Computer memory.

Computers are usually dassified based on the size, cost , computational power & intended use. They are :
e Personal computer (Desktop)
e Workstations
e Mainframe computer

e Supercomputer

The most common type of computer is personal computer. These computers are used in homes ,schools &
business offices.

Workstations have significantly more computational power than personal computers. These are used in
engineering applications such as interadtive design work.

Mainframe computers are very large & powerful computer systems. They are used for business data
processing in medium to large corporations that require much more computing power & storage capadty
than workstations.

Supercomputers are used for large scale numerical calaulations required in the applications such as weather
forecasting & airaaft design & simulation.

Functional units :

A computer consists of five fundionally independent parts : Input, output , ALU , memory & control unit.
They are depicted below .

Input Arithmetic

and

Logic unit

Memory

Output

Control UNIt

I/O Processor

Basic functional of a computer units
The i/p unit accepts coded information from i/p devices such as keyboards or from other computers .
required information is stored in the computer memory for later reference or immediately used by ALU to
perform the desired operation. The processing steps are determined by a program stored in the memory.
Finally the results are sent back to outside world through o/p unit. All these operations are coordinated by
the control unit.
The information handled by a computer may be either instruction or data.
Instructions are the expliat commands that govemn the transfer of information with in a computer as well as
b/w the computer & its I/O devices. They also spedfy the arithmetic & logic operations to be performed. The
list of instrudtions is called as the program & is stored in the memory. The processor fetches the instructions
from the memory one by one & performs the desired operations. The computer is completely controlled by
the stored program except for the external interruption.
Data are the numbers & encoded charadters that are used as operands by the instruction.
Information handled by the computer must be encoded in a suitable format. Each humber, character or
instruction is encoded as a string of binary digits called as bits, each having one of two possible values 0 or 1.
alpha numeric characters are also expressed in the form binary codes.

Two commonly used codes are :

e ASCII(American Standard ode for Information Interchange)

¢ EBCDIC(Extended Binary Coded Decdmal Interchange Code)
INPUT UNIT :
Computer accepts information through i/p devices like keyboard, joysticks, trackballs & mouse.
Whenever a key is pressed, the corresponding letter or digit is automatically translated in to corresponding
binary code& transmitted over a cable to either the memory or the processor.
MEMORY UNIT :
The function of the memory unit is to store programs and data. There are two dasses of storage, clled
primary and secondary.
Primary storage is a fast memory that operates at eledronic speeds. Programs must be stored in the
memory while they are being executed. The memory contains a large number of semiconductor storage
cells, each capable of storing one bit of information. These cells are rarely read or written as individual cells
but instead are processed in groups of fixed size called words. The memory is organized so that the contents
of one word, containing n bits, can be stored or retrieved in one basic operation.
To provide easy access to any word in the memory, a distincdt address is assodated with each word location.
Addresses are numbers that identify successive locations. A given word is accessed by spedfying its

address and issuing a control command that starts the storage or retrieval process.

The number of bits in each word is often referred to as the word length of the computer. Typical word
lengths range from 16 to 64 bits.
Programs must reside in the memory during execution. Instructions and data can be written into the
memory or read out under the control of the processor:
Memory in which any location can be reached in a short and fixed amount of time after spedfying its
address is called random-access memory (RAM).
The time required to access one word is called the memory aacess time. This time is fixed, independent of
the location of the word being accessed
ARITHMETIC & LOGIC UNIT
Most computer operations are exeauted in the arithmetic and logic unit (ALU) of the processor. Consider a
typical example: Suppose two numbers located in the memory are to be added. They are brought into the
processor;, and the actual addition is carried out by the ALU. The sum may then be stored in the memory or
retained in the processor for immediate use. Any other arithmetic or logic operation, for example,
multiplication, division, or comparison of numbers, is initiated by bringing the required operands into the
processor, where the operation is performed by the ALU. When operands are brought into the processor,
they are stored in high-speed storage elements called registers.

Each register can store one word of data. Access times to registers are somewhat faster than access times
to the fastest cache unit in the memory hierarchy.
OUTPUT UNIT

The output unit is the counterpart of the input unit. Tts function is to send processed results to the outside
world. Ex: Monitor; printers etc.

CONTROL UNIT

The memory, arithmetic and logic, and input and output units store and process information and perform
input and output operations. The operation of these units is coordinated by control unit. The control unit is
effedtively the nerve center that sends control signals to other units and senses their states.

Timing signals that govem the I/O transfers are generated by the control drauits. Timing signals are signals
that determine when a given adtion is to take place. Data transfers between the processor and the memory
are also controlled by the control unit through timing signals.

BASIC OPERATIONAL CONCEPTS

The adivity in @ computer is govemed by instructions. To perform a given task, an appropriate
program consisting of a list of instrudtions is stored in the memory. Individual instructions are brought
from the memory into the processor, which executes the spedfied operations. Data to be used as
operands are also stored in the memory. Consider the instruction

Add LOCA, RO

This instruction adds the operand at memory location LOCA to the operand in a register in the
processor, RO, and places the sum into register RO. The original contents of location LOCA are
preserved, whereas those of RO are overwritten. This instrudtion requires the performance of several
steps. First, the instruction is fetched from the memory into the processor. Next, the operand at LOCA
is fetched and added to the contents of RO. Finally, the resulting sum is stored in register RO.

Transfers between the memory and the processor are started by sending the address of the memory
location to be accessed to the memory unit and issuing the appropriate control signals. The data are
then transferred to or from the memory.

Memory

\V4 V4

| MAR | | MDR |

Control

| PC | Ro

-*+—— Process

ALU

Rn- 1

n general purpose
registers

Figure 1.2. Connections between the processor and the memory.

The above fig. shows how the memory and the processor are connected.
In addition to the ALU and the control drauitry, the processor contains a number of registers used for
several different purposes.
The instruction register (IR) holds the instruction that is cumrently being executed. Its output is
available to the control drauits, which generate the timing signals that control the various processing
elements involved in executing the instruction.
The program counter (PC) is another spedalized register, which keeps track of the exeaution of a
program. It contains the memory address of the next instruction to be fetched and executed. During
the exeaution of an instruction, the contents of the PC are updated to cormespond to the address of the
next instrudion to be exeauted. The PC always points to the next instrudtion that is to be fetched from
the memory.
In addition to IR and PC, Processor also contains n general-purpose registers, Ro through Rn-l.
Finally, two registers fadllitate communication with the memory. These are the memory address register
(MAR) and the memory data register (MDR). The MAR holds the address of the location to be accessed. The
MDR contains the data to be written into or read out of the addressed location.
The following are steps involved in executing a program.

e Exeaution of the program starts when the PCiis set to point to the first instruction of the program.

e The contents of the PC are transferred to the MAR and a Read control signal is sent to the

memory.

e After the time required to access the memory elapses, the addressed word is read out of the
memory and loaded into the MDR.

e The contents of the MDR are transferred to the IR. Now the instrudtion is ready for decoding and
exeaution.

e If the instrudion involves an operation to be performed by the ALU, it is necessary to obtain the
required operands. If an operand resides in the memory, it has to be fetched by sending its
address to the MAR and initiating a Read cyde.

e When the operand has been read from the memory into the MDR, it is transferred from the MDR
to the ALU. After one or more operands are fetched in this way, the ALU can perform the desired
operation.

e Ifthe result of this operation is to be stored in the memory, then the result is sent to the MDR. The
address of the location where the result is to be stored is sent to the MAR, and a Write cyde is
initiated.

e At some point during the exeaution of the current instrudion, the contents of the PC are
inaemented so that the PC points to the next instrudtion to be executed. Thus, as soon as the
execution of the current instruction is completed, a new instrudtion fetch may be started.

BUS STRUCTURES

To form an operational system, the fundtional units of the computer must be connected in some organized
way
To achieve a reasonable speed of operation, a computer must be organized so that all its units can handle
one full word of data at a given time. When a word of data is transferred between units, all its bits are
transferred in paralle, that is, the bits are transferred simultaneously over many wires, or lines, one bit per
line. A group of lines that serves as a connedting path for several devices is called a bus.

In addition to the lines that carry the data, the bus must have lines for address and control information.

The simplest way to interconnect fundtional units is to use a Single bus, as shown below.

INPUT OUTPUT MEMORY PROCESSOR

ﬁ

All units are connedted to the same bus. Since the bus can be used for only one transfer at a time, only two

units can adtively use the bus at any given time.

Advantages :
o Lowqost
e Hexibility to attach peripheral devices.

Systems that contain multiple buses achieve more concurrency in operations by allowing two or more
transfers to be carried out at the same time. This leads to better performance but at an increased cost.
The devices connected to a bus vary widely in their speed of operation. Some
electromechanical devices, such as keyboards and printers, are relatively slow.
Others, like magnetic or optical disks, are considerably faster. Memory and
processor units operate at electronic speeds, making them the fastest parts of a
computer. Because all these devices must communicate with each other over a
bus, an efficient transfer mechanism is required to smooth out the differences in
timing among processors, memories, and external devices.
A common approach is to indude buffer registers with the devices to hold the information during
transfers. Consider the task of printing a file, The processor sends the contents of the file over the bus to
the printer buffer. Since the buffer is an eledronic register; this transfer requires relatively lite time. Once
the buffer is loaded, the printer can start printing without further intervention by the processor. The bus
and the processor are no longer needed and can be used for other adtivities. The printer continues print
and is not available for further transfers until this process is completed. Thus, buffer registers smooth out
timing differences among processors, memories, and I/O devices. They prevent a high-speed
processor from being locked to a slow I/O device during a sequence of data transfers.

PERFORMANCE The most important measure of the performance of a computer is
how quickly it can execute programs. The speed with which a computer executes

programs is affected by :
1. thedesign of its hardware
2. its machine language instructions.
3. performance is also affected by the compiler that translates programs into machine language.

For best performance, it is necessary to design the compiler; the machine instruction set, and the hardware

in a coordinated way.
PROCESSOR CLOCK

Processor drauits are controlled by a timing signal called a dock. The dodk defines regular time intenvals,
alled dock cydes. To exeaute a machine instrudion, the processor divides the action to be performed into a
sequence of basic steps, such that each step can be completed in one dock cyde.

The length P of one dock cyde is an important parameter that affects processor performance. Its inverse is
the dock rate,

R=1/P,
which is measured in cydes per second.

BASIC PERFORMANCE EQUATION

Let T be the processor time required to execute a program that has been prepared in some high-level
language. The compiler generates a machine language object program that corresponds to the source
program. Assume that complete exeaution of the program requires the execution of NV machine language
instructions. The number NV is the actual number of instrudtion executions, and is not necessarily equal to
the number of machine instrudions in the object program. Some instructions may be executed more
than once, which is the case for instructions inside a program loop. Others may not be exeauted at all,
depending on the input data used. Suppose that the average number of basic steps needed to execute
one machine instruction is S, where each basic step is completed in one dock cyde. If the dock rate is R
cydes per second, the program execution time is given by

T=(N*S)/R

This is often referred to as the basic performance equation.

To achieve high performance, the computer designer must seek ways to reduce the value of 7, which
means redudng Vand S, and inaeasing R. The value of V is reduced if the source program is compiled into
fewer machine instructions. The value of S is reduced if instrudions have a smaller number of basic steps to
perform or if the execution of instrudtions is overlapped. Using a higher-frequency dodk inareases the value
or R, which means that the time required to complete a basic exeaution step is reduced.

There are two possibilities for inareasing the dodk rate, R.

First, improving the integrated-arcuit (IC) technology makes logic drauits faster; which reduces the time
needed to complete a basic step. This allows the dodk period, P, to be reduced and the dock rate, R, to be
increased. Second, redudng the amount of processing done in one basic step also makes it possible to
reduce the dock period, P. However, if the adtions that have to be performed by an instrudion remain the

same; the number of basic steps needed may inaease.

PIPEILINING AND SUPFRSCAIAR OPERATION A substantial improvement in performance can be
achieved by over- lapping the exeaution of suacessive instrudions, using a technique called pipelining. The
instruction execution consists of 4 different phases.

e fetch phase

e Decode phase

o Exeaute phase

o Result phase

These phases are overlapped in pipelining.

Fetch Decode Execute Result
Fetch Decode Execute Result
Fetch Decode Execute Result

SUPER SCALAR OPERATION

A higher degree of concurrency can be achieved if multiple instruction pipelines are implemented in the
processor; It means that multiple fundional units are used. Super scalar operation means aeating parallel
paths through which different instructions can be executed in parallel. With such an arrangement, it
becomes possible to start the exeaution of several instrudions in every dock cyde. This mode of operation
is called super scalar execution

INSTRUCTION SET: CISC AND RISC

Reduced instruction set computing (RISC):

Simple instrudions require a small number of basic steps to exeaute. For a processor that has only simple
instructions, a large number of instructions may be needed to perform a given programming task. This

could lead to a large value for N and a small value for S.

Complex instruction set computing (CISC) : Complex instructions involve a large number of basic
steps.If individual instructions perform more complex operations, fewer instructions will be needed, leading

to a lower value of V and a larger value of S.

PERFORMANCE MEASUREMENT
The performance of a computer is mainly affected by the execution time, T. But computing the value of T
is not simple. Moreover; parameters such as the dodk speed and various architectural features are not
reliable indicators of the expected performance.
For these reasons, the computer community adopted the idea of measuring computer performance using
benchmark programs. The performance measure is the time it takes a computer to execute a given
benchmark.
A nonprofit organization called System Performance Evaluation Corporation (SPEC) selects the
benchmark programs. The programs selected range from game playing, compiler; and database
applications to numerically intensive programs in astrophysics and quantum chemistry. In each case, the
program is compiled for the computer under test, and the running time on a real computer is measured.
The same program is also compiled and run on one computer selected as a reference. The SPEC rating

is computed as follows

Running time on the reference computer

SPFC ratinn =

Running time on the computer under test

Thus a SPEC rating of 50 means that the computer under test is 50 times faster than the reference
computer. The test is repeated for all the programs in the SPEC suite, and the geometric mean of the

results is computed.

where n is the number of programs in the suite.

MULTIPROCESSORS AND MUL TIOMPUTERS

Large computer systems may contain a number of processor units, in which case they are clled
multiprocessor systems. These systemns either execute a number of different application tasks in parallel,
or they exeaute subtasks of a single large task in parallel. All processors usually have access to all of the
memory in such systems, and the term shared-memory multiprocessor systems are often used to
make this dear. The high performance of these systems comes with much increased complexity and
cost. In addition to multiple processors and memory units, cost is inaeased because of the need for
more complex interconnection networks.

In contrast to multiprocessor systems, it is also possible to use an interconnected group of complete
computers to achieve high total computational power. The computers normally have access only to their
own memory units. When the tasks they are executing need to communicate data, they do so by

exchanging messages over a communication network. This property distinguishes them from shared-

memory multiprocessors, leading to the name message-passing multicomputers.

Generations of Computers

Generation

Technology & architecture Software & applications Representative
systems
First Vacuum tubes & relay Machine / assembly ENIAC
(1945 -54) | memories, CPU driven by PC | languages, single user, no Princeton IAS
& accumulator, fixed point subroutine language, IBM 701
arithmetic programmed I/O using CPU
Second Discrete transistors and core HLL used with compilers, IBM 7090
(1955 -64) memonies, floating point subroutine libraries, batch CDC1604, Univac
arithmetic, I/0 processors, processing monitor. LARC.
multiplexed memory access.
Third Integrated Multiprogramming & time IBM 360/370
(1965 - 74) drcuits(SSI/MSI), sharing OS, multiuser CDC 6600
microprogramming, applications. TI-ASC
pipelining, cache & look PDP-8
ahead processors
Fourth LSI/VLSI and Multiprocessor OS, VAX 9000
(1975 -90) semiconductor memory, languages, compiler and Cray X-MP
multiprocessors, vector environments for parallel IBM 3090
super computers, processing BBN TC2000
multicomputers
Fifth ULSI processors, memory & Massively parallel Fujitsu VPP 500
(1991- switches, high density processing, grand challenge Cray/MPP
Present) packaging, scalable applications, heterogeneous TMC/CM-5
architectures processing Intel

Machine Instructions & Programs
NUMBERS:
Computers are built using logic drauits that operate on information represented by two valued electrical
signals. These signals are represented by two values as 0 and 1.The amount of information represented by
such a signal is referred as a bit of information, where bit stands for binary digit. The most natural way to
represent @ number in @ computer system is by a string of bits, called a binary number; A text character can
also be represented by a string of bits called a character code.

NUMBER REPRESENTATION

Consider an n-bit vector

B= bni...bibo

where bi = 0 or 1 for 0<= i<= n-1. This vedor an represent unsigned integer values Vin the range 0 to 2"
-1, where V(B) = bn1* 2™+ +h* 21+ bp* 20

There is a need to represent both positive and negative numbers. Three systems are used for representing
such numbers:

e Sign-and-magnitude

e 1s-complement

e 2's-complement
In all three systems, the leftmost bit is O for positive numbers and 1 for negative numbers. The following fig
illustrates all three representations using 4-bit numbers. Positive values have identical representations in all
systems, but negative values have different representations. In the sign-and-magnitude system, negative
values are represented by changing the most significant bit from O to 1. For example, +5 is represented by
0101, and -5 is represented by 1101. In 15-complement representation, negative values are obtained by
complementing each bit of the corresponding positive number. Thus, the representation for -3 is obtained by
complementing each bit in the vector 0011 to yield 1100. The operation of forming the 1's-complement of a
given number is equivalent to subtrading that number from 2" - 1, that is, from 1111 in case of 4-bit
numbers . Finally, in the 25-complernent system, forming the 2's-complement of a number is done by
subtracting that number from 2".
Hence, the 2s-complement of a number is obtained by adding 1 to the 1's-complement of that
numberThere are distinct representations for +0 and - 0 in both the sign-and magnitude and 1's-
complement systems, but the 2's-complement system has only one representation for 0. For 4-bit
numbers, the value -8 is representable in the 2'scomplement system but not in the other systems.

H Valies represen bedd

SigDo.eno

Lo =T - magpmnih 1's complement 2"s complement
o111 + 7 + 7T +F
o110 + 5 + 5 + 6
o101 + 5 + 5 +5
D100 +4 +4 +4
oo 11 + 3 + 3 +3
ono1la +2 +2 + 2
ooaonl +1 +1 +1
0000 +0 +0 +a
1000 —0 -7 — B
1001 -1 —5 —7
1010 -2 -5 — B
1011 —3 —4 -5
11000 —4 -3 —4
1101 -5 -2 -3
1110 - —1 _ 2
1111 _7 o -1

ADDITION OF POSITIVE NUMBERS

Consider adding two 1-bit numbers. The results are shown in foloowing fig. The sum of 1 and 1 requires the
2-bit vector 10 to represent the value 2. We say that the sum is 0 and the carry-out is 1.

0 | i |
+ 0 + 0 + 1 + 1
i 1 1

T

Carry-aut
ADDITION AND SUBTRACTION OF SIGNED NUMBERS
There are three systems for representing positive and negative numbers. These
systems differ only in the way they represent negative values. The sign-and-
magnitude system is the simplest representation, but it is also the most awkward for
addition and subtraction operations. The 1’s-complement method is somewhat
better. The 2’s-complement system is the most efficient method for performing
addition and subtraction operations.
Consider addition modulo N (written as mod /). The description of addition mod N of positive integers is
represented by a drde with the V values, 0 through N - 1, marked along its perimeter:

1001 o111
1000

Consider the case N = 16. The operation (7+4) mod 16 yields the value 11. To perform this operation
graphically, locate 7 on the drde and then move 4 units in the dockwise diredtion to arrive at the answer 11.
Similarly, (9 + 14) mod16 = 7; this is modeled on the drde by locating 9 and moving 14 units in the
dockwise diredion to arrive at the answer 7. This technique works for the computation of (a +b) mod 16 for
any positive numbers a and b, that is, to perform addition, locate a and move b units in the dockwise
direction to arrive at (@ + b) mod 16.

Consider the addition of +7 to -3. The 2's-complement representation for these numbers is 0111 and
1101, respedtively. To add these numbers, locate 0111 on the drde then move 1101 (13) steps in the
dockwise diredtion to arrive at 0100, which yields the correct answer of +4.

gl111
+1101

10100

.1:.
Carry-cut

If we ignore the carry-out from the fourth bit position , we obtain the correct answer.
The rules for addition and subtraction of n-bit signed numbers using the 2's-complement representation

systemare :

1. To add two numbers, add their n-bit representations, ignoring the carry-out signal from the most

2.

significant bit (MSB) position. The sum will be the algebraically correct value in the 2's-complement

representation as long as the answer is in the range -2 through +2™1 - 1.

To subtract two numbers X and Y , that is, to perform X - Y, form the
then add it to X, as in rule 1. Again, the result will be the algebraically correct value in the 2's-

2'scomplement of Y and

complement representation system if the answer is in the range -2 through +2 - 1.

The simpligty of either adding or subtrading signed numbers in 2's-complement representation is the

reason why this number representation

()

()

(¥

(1)

4

nolo (+2)
+ 0011 (+3)
nlol (+5)
1011 —5)
+ 1110 [—2)
1001 —7
1101 —3)
— 1001 =73
Dol10 (+2)
—plao [+ 4
nllo (+6)
—ooll (+3)
1001 (7}
— 1011 —53
1001 =7
—oool (+13
nolo (+2)
— 1101 (-3

is used

(b

F

U R U

in modem computers. Examples

0100 (+4)

+ 1010 [—&)
1110 (-2}
0111 (+73

+ 1101 3]
olon [+43
1101

+ 0111
olon (+43
oOolno

+ 1100
1110 -2}
olln

+ 1101
o0ll [+33
1001

+ 0101
1110 [—2)
1001

+ 1111
1000 &)
oOolno

+ 0011
0101 [+ 5]

OVERFLOW IN INTEGER ARITHMETIC

In the 2's-complement number representation system, n bits can represent values in the range -2 to +2™
- 1. For 4 bit number system, the range of numbers that can be represented is -8 through +7.If the result of
an arithmetic operation is outside the representable range, then we say that arnthmetic overflow has
oacurred.

When adding unsigned numbers, the carry-out, a1, from the most significant bit position serves as the
overflow indicator. But this does not work for adding signed numbers. For example, when using 4-bit signed
numbers, if we try to add the numbers +7 and +4, the output sum vedor; S, is 1011, which is the code for
.5, an incorredt result. The carry-out signal from the MSB position is 0. Similarly, if we try to add -4 and -6,
we get S = 0110 = +6, another incorrect result, and in this case, the carry-out signal is 1. Thus, overflow
may occur if both summands have the same sign. Clearly, the addition of numbers with different signs
cannot cause overflow. This leads to the following condusions:

1. Overflow can occur only when adding two numbers that have the same sign.

2. The carry-out signal from the sign-bit pasition is not a suffident indicator of over- flow when adding
signed numbers.

A simple way to detect overflow is to examine the signs of the two summands X and Y

and the sign of the result. When both operands X and Y have the same sign, an overflow

ocaurs when the sign of S is not the same as the signs of Xand Y .

CHARACTERS

In addition to numbers, computers must be able to handle honnumeric text information consisting of
characters. Charadters can be letters of the alphabet, dedmal digits, punctuation marks, and so on. They are
represented by codes that are usually eight bits long. One of the most widely used such codes is the
American Standards Code for Information Interchange (ASCII).

MEMORY LOCATIONS AND ADDRESSES

Information is stored in the memory. The memory consists of many millions of storage cells, each of which
@n store a bit of information having the value 0 or 1. Because a single bit represents a very small amount of
information, bits are not handled individually. The usual approach is to deal with them in groups of fixed size.
For this purpose, the memory is organized so that a group of n bits can be stored or retrieved in a single,
basic operation. Each group of n bits is referred to as a word of information, and n is called the word length.

The memory of a computer can be schematically represented as a collection of words as shown in Fig.

——= fintwmd

4 = seeond word

- Hhword

——= letpord

The word length of the computer typically ranges from 16 to 64 bits. If the word length of a computer is 32
bits, a single word can store a 32-bit 2's-complement number or four ASCII characters, each occupying 8
bits. A unit of 8 bits is called a byte. Machine instructions may require one or more words for their
representation.

e ; ol
| i3 |

b [b

. b

i
L Sgnbir by= 0 forpostve qures
by= | for nepative rumbers

{8) Asigned imagar

§ s fis §his Bt

(e T ¥
X ASCH 43T AR
cemwer cemtm ot chamo

{t) Four charecters

Acacessing the memory to store or retrieve a single item of information, either aword or a byte, requires
distinct names or addresses for each item location. It is customary to use numbers from 0 through 2+-1, for
some suitable value of k. The 2k addresses constitute the address space of the computer; and the memory
@an have up to 2k addressable locations. For example, a 24-bit address generates an address space of 2%
(16,777,216) locations. This number is usually written as 16M (16 mega), where 1M is the number 2%
(1,048,576). A 32-bit address creates an address space of 2% or 4G (4 giga) locations, where 1G is 2%,
BYTE ADDRESSABILITY

The memory consists of three basic information quantities: the bit, byte, and word.A byte is always 8 bits,
but the word length typically ranges from 16 to 64 bits. It is impradical to assign distinct addresses to

individual bit locations in the memory. The most practical assignment is to have successive addresses refer

to successive byte locations in the memory. The term byte-addressable memory is used for this assignment.
Byte locations have addresses 0, 1, 2, Thus, if the word length of the machine is 32 bits, successive
words are located at addresses 0, 4, 8, . . ., with each word consisting of four bytes.

BIG-ENDIAN AND LITTLE-ENDIAN ASSIGNMENTS

There are two ways that byte addresses can be assigned across words, as shown in Fig. The name big-
endian is used when lower byte addresses are used for the more significant bytes (the lefimost bytes) of the
word. The name little-endian is used for the opposite ordering, where the lower byte addresses are used for
the less significant bytes (the rightmost bytes) of the word. Both litle-endian and big-endian assignments
are used in commerdal machines. In both cases, byte addresses 0, 4, 8, . . ., are taken as the addresses of

successive words in the memory and are the addresses used when spedfying memory read and write

operations for words.
Word
addrean Byte acdiirean Byt addwan
0 0 1 1| 3 0| 3| 2 1| 8
4 | 4| 5| 6|7 41|65 |4
B PRI LA LSE LR R R N E R Y
{a) Big-andian assignmart (b} Littla-andian a==ignmant
WORD ALIGNMENT
If the wordlength is 32-bit, then word boundaries occur at addresses 0, 4,8, We say that the word

locations have aligned addresses. In general, words are said to be aligned in memory if they begin at a byte
address that is a multiple of the number of bytes in a word. In genaral, the number of bytes in a word is a
power of 2. Hence, if the word length is 16 (2 bytes), aligned words begin at byte addresses 0, 2, 4, . . .,
and for a word length of 64 (23 bytes), alignedwords begin at byte addresses 0, 8, 16,There is no
fundamental reason why words cannot begin at an arbitrary byte address. In that case, words are said to
have unaligned addresses.

ACCESSING NUMBERS, CHARACTERS AND CHARACTER STRINGS

A number usually ocaupies one word. It can be accessed in the memory by spedifying its word address.
Similarty, individual characters can be accessed by their byte address.

In some applications, it is necessary to handle character strings of variable length. The beginning of the string
is indicated by giving the address of the byte containing its first character: Successive byte locations contain
suacessive characters of the string. There are two ways to indicate the length of the string. A spedal control
character with the meaning “end of string” can be used as the last character in the string, or a separate
memory word location or processor register can contain a number indicating the length of the string in
bytes.
MEMORY OPERATIONS
Both program instrudtions and data operands are stored in the memory. To execute an instrudion, the
processor control drcuits must cause the word (or words) containing the instrudtion to be transferred from
the memory to the processor. Operands and results must also be moved between the memory and the
processor; Thus, two basic operations involving the memory are needed, namely, Load (or Read or Fetch)
and Store (or Write).
The Load operation transfers a copy of the contents of a specific memory location to the processor. The
memory contents remain unchanged. To start a Load operation, the processor sends the address of the
desired location to the memory and requests that its contents be read. The memory reads the data stored
at that address and sends them to the processor.
The Store operation transfers an item of information from the processor to a spedific memory location,
destroying the initial contents of that location. The processor sends the address of the desired location to the
memory, together with the data to be written into that location.
INSTRUCTIONS AND INSTRUCTION SEQUENCING
The tasks carried out by a computer program consist of a sequence of small steps, such as adding two
numbers, testing for a particular condition, reading a character from the keyboard, or sending a character to
be displayed on a display saeen. A computer must have instructions capable of performing four types of
operations:

¢ Data transfers between the memory and the processor registers

¢ Arithmetic and logic operations on data

e Program sequendng and control

e I/Otransfers

REGISTER TRANSFER NOTATION

To transfer the information from one location in the computer to ancther the following locations are involved
are
e memory locations,

e processor registers, or registers in the I/O subsystem.

The location is identified by a symbolic name.
For example,names for the addresses of memory locations may be LOC,PLACE, A, VAR2; processor register
names may be RO, R5; and I/O register names may be DATAIN, OUTSTATUS, and so on. The contents of a
location are denoted by pladng square bradkets around the name of the location. Thus, the expression
Rl «—HOC]
means that the contents of memory location LOC are transferred into processor register R1.
consider the operation that adds the contents of registers R1 and R2, and then places their sum into register
R3. This adtion is indicated as
R3 «—[R1] + [R2]
This type of notation is known as Register Transfer Notation (RTN). The right-hand side of an RTN
expression always denotes a value, and the left-hand side is the name of a location where the value is to be
placed, overwriting the old contents of that location.
ASSEMBLY LANGUAGE NOTATION
There is another type of notation to represent machine instructions and programs. For this, we use an
assembly language format. For example, an instrudtion that causes the transfer from memory location LOC
to processor register R1, is spedified by the statement
Move LOC,R1
The contents of LOC are unchanged by the exeaution of this instruction, but the old contents of register R1
are overwritten.
The addition of two numbers contained in processor registers R1 and R2 and pladng their sum in R3 can
be spedfied by the assembly language statement
AddR1,R2,R3
BASIC INSTRUCTION TYPES
The operation of adding two numbers is a fundamental capability in any computer. The statement
C=A+B
in a high-level language program is a command to the computer to add the cumrent values of the two
variables called A and B, and to assign the sum to a third variable, C. When the program containing this
statement is compiled, the three variables, A, B, and C, are assigned to distinct locations in the memory. The
contents of these locations represent the values of the three variables. Hence, the above high-level language
statement requires the action
C<+—[A] +[B]
to take place in the computer: To carry out this action, the contents of memory locations A and B are fetched
from the memory and transferred into the processor where their sum is computed. This result is then sent
badk to the memory and stored in location C.

If this adion is to be performed by a single machine instrudion and the instruction contains the memory
addresses of the three operands—A, B, and C then three-address instrudion can be represented
symbolically as
Add AB,C
Operands A and B are called the source operands, C is called the destination operand, and Add is the
operation to be performed on the operands.
A general instruction of this type has the format

Operation Sourcel,Source?,Destination
If k bits are needed to spedfy the memory address of each operand, the encoded form of the above
instruction must contain 3k bits for addressing purposes in addition to the bits needed to denote the Add
operation. For a modem processor with a 32-bit address space, a 3-address instrudion is too large to fit in
one word for a reasonable word length. Thus, a format that allows multiple words to be used for a single
instrucion would be needed to represent an instruction of this type.
An altemative approach is to use a sequence of simpler instructions to perform the same task, with each
instruction having only one or two operands. The two-address instrudions of the form

Operation Source, Destination
are available. An Add instruction of this type is

AddAB
which performs the operation B «—— [A] + [B]. When the sum is calculated, the result is sent to the
memory and stored in location B, repladng the original contents of this location. This means that operand B

is both a source and a destination.

The problem in two address instruction is one of the operand is destroyed. The
problem can be solved by using another two address instruction that copies the
contents of one memory location into another.

Move B,C

which performs the operation C<+— [B], leaving the contents of location B unchanged.
The operation C&+—{A] + [B] can now be performed by the two-instrudtion sequence

Move B,C
AddAC
Two-address instrudions will not normally fit into one word for usual word lengths and address sizes.

Another possibility is to have machine instrudions that specify only one memory operand. The second

operand is impliatly spedfied in the instruction. A processor register; called the accumulator, is used for this
purpose. Thus, the one-address instruction

Add A
This instruction adds the contents of memory location A to the contents of the accumulator register and
place the sum badk into the accumulator:
Ex: one-address instructions

Load Aand

Store A
The Load instruction copies the contents of memory location A into the accumulator, and the Store
instruction copies the contents of the accumulator into memory location A.
Now the operation C<— [A]+[B] can be performed by

Load A

Add B

Store C
The operand spedfied in the instrudion may be a source or a destination, depending on the instruction. In
the Load instruction, address A specifies the source operand, and the destination location, the accumulator; is
implied. On the other hand, C denotes the destination location in the Store instrudtion, whereas the source,
the accumulator, is implied.
Early computers were designed around a single accumulator structure. Most modem computers have a
number of general-purpose processor registers (8 to 32). Access to data in these registers is much faster
than to data stored in memory locations because the registers are inside the processor. Because the number
of registers is relatively small, only a fewbits are needed to spedify which register takes part in an operation.
For example, for 32 registers, only 5 bits are needed. This is much less than the number of bits needed to
give the address of a loction in the memory. Because the use of registers allows faster processing and
results in shorter instrudions, registers are used to store data temporarily in the processor during processing.
Let R/ represent a general-purpose register. The instructions

Load AR/

Store R/,A
and

Add ARi
are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in which register
R/ performs the fundtion of the accumulator,The address of one operand is diredly spedfied in the
instruction. The other operand is spedfied in the register Ri. i.e. one operand is in register & the other
operand is in memory location . This type of instruction is reffered as "One & half address instruction”.

When a processor has several general-purpose registers, many instrudtions involve only operands that are
in the registers. In fact, in many modem processors, computations can be performed diredtly only on data
held in processor registers. Instructions such as

Add RiRj

or

Add RiR j,Rk
are of this type. In both of these instructions, the source operands are the contents of registers Riand R . In
the first instruction, Rj also serves as the destination register; whereas in the second instruction, a third
register; Rk, is used as the destination. Such instrudions, where only register names are contained in the
instruction, will normally fit into one word.
It is often necessary to transfer data between different locations. This is achieved with the instruction

Move Source,Destination
which places a copy of the contents of Source into Destination.
In processors where arithmetic operations are allowed only on operands that are in processor registers, the
C = A + B task can be performed by the instruction sequence

Move AR/

Move B,Rj

Add RiRj

MoveRj,C
In processors where one operand may be in the memory but the other must be in a register; an instruction
sequence for the required task would be

Move AR/

Add B,R/

Move R/,C
The speed with which a given task is carried out depends on the time it takes to transfer instrudtions from
memory into the processor and to access the operands referenced by these instrudions. Transfers that
involve the memory are much slower than transfers within the processor. Hence, a substantial inaease in
speed is achieved when several operations are performed in succession on data in processor registers
without the need to copy data to or from the memory. When machine language programs are generated by
compilers from high-level languages, it is important to minimize the frequency with which data is moved
badk and forth between the memory and processor registers.
INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING
Consider the task C€—[A] + [B]. Fig shows a possible program segment for this task as it appears in the
memory of a computer. Assume that the computer allows one memory operand per instruction , has a

number of processor registers, word length is 32 bits and the memory is byte addressable. The three

instructions of the program are in successive word locations, starting at location /. Since each instruction is 4
bytes long, the second and third instructions start at addresses /i + 4 and j + 8.

Address Contents
Begin mecution here —- { Move ARD
J-instructon
t+4 Add HRO program
segment
i+8 Move ROC Bt
A -~
Diata for
B - the program
C -—

The processor contains a register called the program counter (PC), which holds the address of the instruction
to be exeauted next. To begin executing a program, the address of its first instruction (/) must be placed into
the PC. Then, the processor control drauits use the information in the PC to fetch and execute instructions,
one at a time, in the order of inaeasing addresses. This is clled straight-line sequencing. During the
exeaution of each instruction, the PC is inaemented by 4 to point to the next instruction.

Exeauting a given instrudion is a two-phase procedure. In the first phase, clled instrudtion fetch, the
instrudion is fetched from the memory location whose address is in the PC. This instruction is placed in the
instruction register (IR) in the processor. At the start of the second phase, clled instrudion execute, the
instrucdon in IR is examined to determine which operation is to be performed. The spedfied operation is
then performed by the processor: This often involves fetching operands from the memory or from processor
registers, performing an arithmetic or logic operation, and storing the result in the destination location. At
some point during this two-phase procedure, the contents of the PC are advanced to point to the next
instrucion. When the execute phase of an instruction is completed, the PC contains the address of the next
instruction, and a new instrudtion fetch phase can begin.

BRANCHING

Consider the task of adding a list of n numbers. The program is shown in fig.. The addresses of the memory
locations containing the n numbers are symbolically given as NUM1, NUM2, . . . , NUMn, and a separate Add
instruction is used to add each number to the contents of register RO. After all the numbers have been
added, the result is placed in memory location SUM.

NUMLRO
NLUMZRO
NUM3,RO

AHE

i+dn -4 Add NUMaRO

i+4n Move ROSTM

UM
NUM1

NUM=r

Figura 2.9 A stralghtlina program for
adding m numkbsers,

Instead of using a long list of Add instrudions, it is possible to place a single Add instrudion in a program
loop, as shown below. The loop is a straight-ine sequence of instructions exeauted as many times as
needed. It starts at location LOOP and ends at the instrudion Branch>0. During each pass through this loop,
the address of the next list entry is determined, and that entry is fetched and added to RO.

Move NE1
Clear RO
[Loop
| Determine address of |
< 'Mext" munber end add <=~
Program *Mext" number to RO
loop |
Decrement Rl
Hranch-0 LODH
Move R0SUM
SUM
N n
MUMI1
MUM2
NUN=

Assume that the number of entries in the list, n, is stored in memory location N, as shown. Register R1 is

used as a counter to determine the number of times the loop is executed. Hence, the contents of location N

are loaded into register R1 at the beginning of the program. Then, within the body of the loop, the instruction
Decement R1

reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the

result of the decrement operation is greater than zero.

Consider the branch instruction. This type of instruction loads a new value into the program counter:. As a

result, the processor fetches and executes the instruction at this new address, clled the branch target,

instead of the instruction at the location that follows the branch instruction in sequential address order. A

conditional branch instruction causes a branch only if a spedfied condition is satisfied. If the condition is not

satisfied, the PC is inademented in the normal way, and the next instrudion in sequential address order is

fetched and exeauted.

In the program, the instruction

Branch>0 LOOP

(branch if greater than 0) is a conditional branch instruction that causes a branch to location LOOP if the

result of the immediately preceding instrudion, which is the decremented value in register R1, is greater

than zero. This means that the loop is repeated as long as there are entries in the list that are yet to be

added to RO. At the end of the nth pass through the loop, the Decrement instruction produces a value of

zero, and, hence, branching does not ocaur: Instead, the Move instrudtion is fetched and executed. It moves
the final result from RO into memory location SUM.

CONDITION CODES
The processor keeps tradk of information about the results of various operations for use by subsequent
conditional branch instructions. This is accomplished by recording the required information in individual bits,
often aalled condition code fiags. These flags are usually grouped together in a spedal processor register
called the condition code register or status register. Individual condition code flags are set to 1 ordeared to O,
depending on the outcome of the operation performed.

Four commonly used flags are

N (negative) Set to 1 if the result is negative; otherwise, deared to 0

Z (zero) Set to 1 if the result is 0; otherwise, deared to O
V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, deared to 0

C (carry) Set to 1 if a carry-out results from the operation; otherwise,

dearedto O
The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or zero.
The V flag indicates whether overflow has taken place. The overflow occurs when the result of an arithmetic
operation is outside the range of values that can be represented by the number of bits available for the
operands.
The Cflagis set to 1 if a carry occurs from the most significant bit position during an arithmetic operation.
ADDRESSING MODES
A program operates on data that reside in the computer's memory. These data can be organized in a variety
of ways. The names of students can be stored in a list. If wewant to assodate information with each name,
for example to record telephone numbers & addresses , we may organize this information in the form of a
table. Programmers use data structures to represent the data used in computations. These indude lists,
linked lists, arrays, queues, and so on.
The different ways in which the location of an operand is spedfied in an instruction are referred to as
addressing modes.

IMPLEMENTATION OF VARIABLES AND CONSTANTS
Variables and constants are the simplest data types found in every computer program. In assembly
language, a variable is represented by allocating a register or a memory location to hold its value.

Ex: MOVEA, Ri
The operand is spedified by the name of the register or the address of the memory location where the
operand is located. The predise definitions of these two modes are:
Register mode — The operand is the contents of a processor register; the name

(address) of the register is given in the instruction.

Absolute mode — The operand is in a memory location; the address of this location
is given explidtly in the instruction. This mode is also called as Direct addressing mode
The instrudion
Move AR2
uses these two modes. Processor registers are used as temporary storage locations where the data in a
register are accessed using the Register mode.
Consider the representation of constants. Address and data constants can be represented in assembly
language using the Immediate mode.
Immediate mode — The operand is given expliatly in the instruction.
For example, the instruction
Move #200, RO
places the value 200 in register RO. Clearly, the Immediate mode(#) is only used to spedify the value of a
source operand.
Constant values are used frequently in high-level language programs. For example,the statement
A=B+6

contains the constant 6. Assuming that A and B have been dedared as variables and may be accessed
using the Absolute mode, this statement may be compiled as follows:

Move B,R1

Add #6,R1

Move R1,A
INDIRECTION AND POINTERS
In some addressing modes, the instruction does not give the operand or its address explidtly. Instead, it
provides information from which the memory address of the operand can be determined. This address as
the effective address (EA) of the operand.
Indirect mode — The effective address of the operand is the contents of a register or memory location
whose address appears in the instruction.
The indirection is denoted by pladng the name of the register or the memory address given in the
instruction in parentheses .

Add (RI1RD Add (A)RO
! . Main
memery
B Dperemd A H
El H Remster H Crperand
(2) Through a ganeral-purpose register (b Through a mamory location

To exeaute the Add instruction in Fig a, the processor uses the value B, which is in register R1, as the
effective address of the operand. It requests a read operation from the memory to read the contents of
location B. The value read is the desired operand, which the processor adds to the contents of register RO.
Indirect addressing through a memory location is also possible as shown in Fig b. In this case, the processor
first reads the contents of memory location A, then requests a second read operation using the value B as
an address to obtain the operand.

The register or memory location that contains the address of an operand is called a pointer

Consider the program for adding a list of n numbers. Indirect addressing can be used to access suacessive

numbers in the list, resulting in the following program .

Addrean Comtents

Mowve N.El
Mowve #NUMI B2 [mtehzahon
Clear RO
—n LO0OP Add (RA.H0
Add MR
Decrement Rl
Brancha{d LOOR
Move ROSUM

Register R2 is used as a pointer to the numbers in the list, and the operands are accessed indireddly through
R2. The initialization section of the program loads the counter value n from memory location N into R1 and
uses the immediate addressing mode to place the address value NUM1, which is the address of the first
number in the list, into R2. Thenitdears RO to 0.

The first time through the loop, the instruction

Add (R2),R0O
fetches the operand at location NUM1 and adds it to RO. The second Add instruction adds 4 to the contents
of the pointer R2, so that it will contain the address value NUM2 when the above instruction is exeauted in
the second pass through the loop.
INDEXING AND ARRAYS
This type of addressing mode is useful in dealing with lists and arrays.
Index mode — The effediive address of the operand is generated by adding a constant value to the contents
of a register;
The register used may be either a spedal register provided for this purpose, o, more commonly, it may be
any one of a set of general-purpose registers in the processor. In either case, it is referred to as an index
register.
The Index mode is symbolically written as

X(Ri)
where X denotes the constant value contained in the instruction and R/ is the name of the register involved.
The effediive address of the operand is given by

EA=X+[R/]
The contents of the index register are not changed in the process of generating the effective address.

The following Fig illustrates two ways of using the Index mode. In Fig a, the index register, R1, contains the
address of a memory location, and the value X defines an offset(also called a displacement) from this
address to the location where the operand is present.

An altemative way is illustrated in Fig b. Here, the constant X corresponds to a memory address, and the
contents of the index register define the offset to the operand.

In either case, the effedtive address is the sum of two values; one is given expliatly in the instruction, and the
other is stored in a register.

Add 20(RI1)BR2

T 1000 1000 Rl

20 = offact

_L 1020 Crperand

(=) Cff=at i= givan a5 a conzstant

4

Add 100DRILRE

T 1000 20 Rl

20 = offzet -

—L 1020 Cperend

(b} Cffzat is in tha index ragistar

RELATIVE ADDRESSING

The Index mode is defined by using general-purpose processor registers. A useful version of this mode is
obtained if the program counter; PC, is used instead of a general purpose register: Then, X(PC) can be used
to address a memory location that is X bytes away from the location presently pointed to by the program
counter; Since the addressed location is identified “relative” to the program counter, the name Relative mode
is assodated with this type of addressing.

Relative mode — The effective address is determined by the Index mode using the program counter in
place of the general-purpose register Ri.

This mode can be used to access data operands. But, its most common use is to spedfy

the target address in branch instrudions. An instruction such as

Branch>0 LOOP
causes program exeaution to go to the branch target location identified by the name LOOP if the branch
condition is satisfied. This location can be computed by spedfying it as an offset from the current value of the
program counter: Since the branch target may be either before or after the branch instrudion, the offset is
given as a signed number.
During the execution of an instruction, the processor inaements the PC to point to the next instruction. Most
computers use this updated value in computing the effective address in the Relative mode. For example,
suppose that the Relative mode is used to generate the branch target address LOOP in the Branch
instruction of the program. Assume that the instrudion starting at LOOP, is located at memory locations
1000 and branch instrudion is located at 1012. so during branch instruction execution, the PC contains a
value 1016. To branch to location LOOP (1000), the offset value neededis X = -16.
ADDITIONAL MODES
The foloowing two modes are useful for accessing data items in successive locations in the memory.
Autoinaement mode — The effedive address of the operand is the contents of a register spedified in the
instrucdion. After accessing the operand, the contents of this register are automatically inaemented to point
to the next item in a list.
We denote the Autoinaement mode by putting the spedfied register in parentheses, to show that the
contents of the register are used as the effedtive address, followed by a plus sign to indicate that these
contents are to be inaemented after the operand isaccessed. Thus, the Autoinaement mode is written as

(Ri)+

Impliatly, the increment amount is 1 when the mode is given in this form. But in a byte addressable
memory, this mode would only be useful in accessing successive bytes of some list. To access successive
words in a byte-addressable memory with a 32-bit word length, the inarement must be 4. Computers that
have the Auto inaement mode automatically inadement the contents of the register by a value that
corresponds to the size of the accessed operand. Thus, the inaement is 1 for byte-sized operands, 2 for 16-
bit operands, and 4 for 32-bit operands. Since the size of the operand is usually spedfied as part of the

operation code of an instrudtion, it is suffident to indicate the auto inaement mode as (Ri)+.

Auto deaement mode — The contents of a register spedfied in the instruction are first automatically
deaemented and are then used as the effedtive address of the operand.
We denote the Auto decement mode by putting the spedfied register in parentheses, preceded by a minus
sign to indicate that the contents of the register are to be deaemented before being used as the effective
address. Thus, we write

-(Ri)
In this mode, operands are accessed in descending address order:

These two modes can be used togetherto implement an important data structure called a stack.
ASSEMBLY LANGUAGE
Machine instrudtions are represented by pattems of Os and 1s. Such pattems are awkward
to deal with when discussing or preparing programs. Therefore, we use symbolic names to represent the
pattems. So far, we have used normal words, such as Move, Add, Inarement, and Branch, for the instruction
operations to represent the corresponding binary code pattems. When writing programs for a spedfic
computer; such words are normally replaced by aconyms called mnemonics, such as MOV, ADD, INC, and
BR.
A complete set of such symbolic names and rules for their use constitute a programming language,
generally referred to as an assembly language.
The set of rules for using the mnemonics in the spedification of complete instrudions and programs is called
the syntax of the language.
Programs written in an assembly language can be automatically translated into a sequence of machine
instrucions by a program called an assembler.
The assembler program is one of a colledtion of utility programs that are a part of the system software.
When the assembler program is executed, it reads the user program, analyzes it, and then generates the
desired machine language program. The generated program consists of 0s and 1s spedfying instructions
that will be executed by the computer
The user program in its original alphanumeric text format is called a source program, and the assembled
machine language program is called an object program.
ASSEMBLER DIRECTIVES
In addition to providing a mechanism for representing instructions in a program, the assembly language
allows the programmer to spedify other information needed to translate the source program into the object
program.
Suppose that the name SUM is used to represent the value 200. This fact may be conveyed to the
assembler program through a statement such as

SUM EQU 200
This statement does not denote an instrudtion that will be executed when the object program is run; in fact,
it will not even appear in the object program. It simply informs the assembler that the name SUM should be
replaced by the value 200 wherever it appears in the program. Such statements are 0 called as assembler

directives (or commands).

BASIC INPUT/OUTPUT OPERATIONS

Consider a task that reads in character input from a keyboard and produces character output on a display
sareen. A simple way of performing such I/O tasks is to use a method known as program-controlled 1/0.
The rate of data transfer from the keyboard to a computer is limited by the typing speed of the user: The rate
of output transfers from the computer to the display is much higher. It is determined by the rate at which
characters can be transmitted over the link between the computer and the display device, typically several
thousand characters per second. However, this is still much slower than the speed of a processor that can
exeaute many millions of instructions per second. The difference in speed between the processor and I/O
devices aeates the need for mechanisms to synchronize the transfer of data between them.

A solution to this problem is as follows: On output, the processor sends the first character and then waits for
a signal from the display that the character has been received. It then sends the second charadter; and so
on.

Input is sent from the keyboard in a similar way; the processor waits for a signal indicating that a character
key has been struck and that its code is available in some buffer register assodated with the keyboard. Then
the processor proceeds to read that code.

The keyboard and the display are separate devices as shown in Figure 2.19.

Hus
Procossor DATAIN DATAQUT
[] siv [] sour
Keyboard Thsplay

The adiion of striking a key on the keyboard does not automatically cause the corresponding character to be
displayed on the sareen. One blodk of instructions in the I/O program transfers the character into the
processor; and another assodated block of instrudtions causes the character to be displayed.

Consider the problem of moving a character code from the keyboard to the processor: Striking a key stores
the corresponding character code in an 8-bit buffer register assodated with the keyboard. Let us call this
register DATAIN register: To inform the processor that a valid character is in DATAIN, a status control flag,
SIN, is set to 1. A program monitors SIN, and when SIN is set to 1, the processor reads the contents of
DATAIN. When the character is transferred to the processor; SIN is automatically deared to 0. If a second
character is entered at the keyboard, SIN is again set to 1 and the process repeats.

An analogous process takes place when characters are transferred from the processor to the display.Abuffer
registe; DATAOUT, and a status control flag,SOUT, are used for this transfer. When SOUT equals 1, the
display is ready to receive a character: Under program control, the processor monitors SOUT, and when
SOUT is set to 1, the processor transfers a character code to DATAOUT. The transfer of a character to
DATAOUT dears SOUT to 0; when the display device is ready to receive a second character; SOUT is again
set to 1. The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of drauitry
commonly known as a device interface.
In order to perform I/O transfers, we need machine instrudions that can check the state of the status flags
and transfer data between the processor and the I/O device. These instrudions are similar in format to those
used for moving data between the processor and the memory. For example, the processor can monitor the
keyboard status flag SIN and transfer a character from DATAIN to register R1 by the following sequence of
operations:

READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1
The Branch operation is usually implemented by two machine instructions. The first instruction tests the
status flag and the second performs the branch.
An analogous sequence of operations is used for transferring output to the display. An example is

WRITEWAIT Branch to WRITEWALT if SOUT = 0

Output from R1 to DATAOUT
Again, the Branch operation is normally implemented by two machine instrudions. The wait loop is executed
repeatedly until the status flag SOUT is set to 1 by the display when it is free to receive a character: The
Output operation transfers a character from R1 to DATAOUT to be displayed, and it dears SOUT to 0.
The addresses issued by the processor to access instructions and operands always refer to memory
locations. Many computers use an arrangement called memory-mapped I /O in which some memory
address values are used to refer to peripheral device buffer registers, such as DATAIN and DATAOUT. Thus,
no spedal instructions are needed to access the contents of these registers; data can be transferred between
these registers and the processor using instructions that we have already discussed, such as Move, Load, or
Store. For example, the contents of the keyboard character buffer DATAIN can be transferred to register R1
in the processor by the instruction

MoveByte DATAIN,R1
Similarly, the contents of register R1 can be transferred to DATAOUT by the instrudion
MoveByte R1,DATAOUT

The status flags SIN and SOUT are automatically deared when the buffer registers
DATAIN and DATAQUT are referenced, respedively.

The two data buffers DATAIN & DATAOUT may be addressed as if they were two memory locations. It is
possible to deal with the status flags SIN and SOUT in the same way, by assigning them distinct addresses.
However, it is more common to indude SIN and SOUT in device status registers, one for each of the two
devices. Let us assume that bit 63 in registers INSTATUS and OUTSTATUS corresponds to SIN and SOUT,
respedively. The read operation just desaibed may now be implemented by the machine instruction
sequence

READWAIT Testbit #3,INSTATUS

Branch=0 READWAIT

MoveByte DATAIN,R1
The write operation may be implemented as

WRITEWAIT Testbit #3,0UTSTATUS

Branch=0 WRITEWAIT

MoveByte R1,DATAOUT
The Testbit instruction tests the state of one bit in the destination location, where the bit position to be tested
is indicated by the first operand. If the bit tested is equal to 0, then the condition of the branch instrudion is
true, and a branch is made to the beginning of the wait loop. When the device is ready, that is, when the bit
tested becomes equal to 1, the data are read from the input buffer or written into the output buffer;
SUBROUTINES
In a given program, it is often necessary to perform a particular subtask many times on different data
values. Such a subtask is usually called a subroutine.
It is possible to indude the blodk of instructions that constitute a subroutine at every place where it is needed
in the program. However; to save space, only one copy of the instrudions that constitute the subroutine is
placed in the memory, and any program that requires the use of the subroutine simply branches to its
starting location. When a program branches to a subroutine we say that it is calling the subroutine. The
instruction that performs this branch operation is named a Call instruction.
After a subroutine has been executed, the calling program must resume execution, continuing immediately
after the instruction that called the subroutine. The subroutine is said to retumn to the program that called it
by exeauting a Retum instruction. Since the subroutine may be called from different places in a clling
program, provision must be made for retuming to the appropriate location. The location where the clling
program resumes exeaution is the location pointed to by the updated PC while the Call instruction is being
exeauted. Hence, the contents of the PC must be saved by the Call instruction to enable correct retum to the
calling program.
The way in which a computer makes it possible to call and retum from subroutines is referred to as its
subroutine linkage method. The simplest subroutine linkage method is to save the retum address in a
spedfic location, which may be a register dedicated to this function. Such a register is called the link register.

When the subroutine completes its task, the Retum instrudtion retums to the calling program by branching
indirectly through the link register.
The Call instrudtion is just a spedal branch instruction that performs the following operations:
e Store the contents of the PC in the link register
e Branch to the target address spedified by the instruction
The Retum instruction is a spedal branch instruction that performs the operation:
e Branch to the address contained in the link register

The following Fig illustrates this procedure.

Memory Memory

location Calling program Incation Subroutine SUH
200 Call SUH —_——- 1000 first instructon
204 next iInstichon -_—

Retom

1000

| 1 | | |
! f
Link | | | 04 |
Call Return

SUBROUTINE NESTING AND THE PROCESSOR STACK

A common programming pradice, called subroutine nesting, is to have one subroutine call ancther; In this
case, the retum address of the second call is also stored in the link register; destroying its previous contents.
Hence, it is essential to save the contents of the link register in some other location before calling another
subroutine. Otherwise, the retum address of the first subroutine will be lost.

Subroutine nesting can be crried out to any depth. Eventually, the last subroutine called completes its
computations and retums to the subroutine that called it. The retum address needed for this first retum is
the last one generated in the nested call sequence. That is, retum addresses are generated and used in a
last-in—first-out order. This suggests that the retum addresses assodated with subroutine calls should be
pushed onto a stack. Many processors do this automatically as one of the operations performed by the Call

instruction. A particular register is designated as the stack pointer; SP, to be used in this operation. The stack
pointer points to a stack called the processor stack. The Call instruction pushes the contents of the PC onto
the processor stack and loads the subroutine address into the PC. The Retum instruction pops the retum
address from the processor stack into the PC.

PARAMETER PASSING

When calling a subroutine, a program must provide to the subroutine the parameters, that is, the operands
or their addresses, to be used in the computation. Later; the subroutine retums other parameters, in this
case, the results of the computation. This exchange of information between a alling program and a
subroutine is referred to as parameter passing. Parameter passing may be accomplished in several ways.
The parameters may be placed in registers or in memory locations, where they can be accessed by the
subroutine. Altematively, the parameters may be placed on the processor stack used for saving the retum
address.

Passing parameters through processor registers is straightforward and effigent. The following Fig. shows
how the program for adding a list of numbers can be implemented as a subroutine, with the parameters
passed through registers. The size of the list, n, contained in memory location N, and the address, NUM1, of
the first number; are passed through registers R1 and R2. The sum computed by the subroutine is passed
badk to the clling program through register RO. The first four instrudions in Fig. constitute the relevant part
of the alling program. The first two instrudions load n and NUM1 into R1 and R2. The Call instruction
branches to the subroutine starting at location LISTADD. This instruction also pushes the retum address onto
the processor stadk. The subroutine computes the sum and places it in RO. After the retum operation is
performed by the subroutine, the sum is stored in memory location SUM by the clling program.

Calling program

Move M. R1 R1 ssrves as a counter.
Move #NUNM1 R2 |2 points to the list.
Call LISTADD}Y Call subroutine.
Mova ROSTUR Save result.
Subroutine
LISTADD} Clear RO Initialize aum to O.
LCOP Add (RZ)+ RO Add erttry from list_

Decrernent R1

Branch=0 L{OP
Return Return to calling prograrn.

MEMORY OPERATIONS

Both program instructions and data operands are stored in the memory: To execute an instruction, the processor control circuits must cause theword
(orwords) containing the instruction to be transferred from the memory 1o the processor. Operands and results must also be moved between the
memoryand the processor, Thus, two basic operations involving the memory are needed, namely; Load (or Read or Fetch) and Store (or WHEE).

The Load operation transfers a copy of the contents of a specific memory location to the processor. The memory conterts remain unchanged. To
start a Load operation, the processor sends the address of the desired location to the memory and requests thet its contents be read. The memory
reads the data stored at that address and sends them to the processor.

The Store operation transfers an item of informetion from the processor to a specific memory location, destroying the former conterts of that
location. The processor sends the address of the desired location to the memory; together with the data to be written into thet location.

INSTRUCTIONSAND INSTRUCTION SEQUENCING

The tasks carmied ouit by a computer program corsist of a sequence of small steps, such as adding two numbers, testing for a particular condition,
reading a character from the keyboard, or sending a character 1o be displayed on a display screen. Acomputer must have instructions capeble of
performing four types of operations:

* Datatransfers between the memory and the processor registers

+ Arithmeticand logic operations on data

* Programsequencing and control

* IO trarsfers

We need some notation to represent the instructions.

REGISTER TRANSFERNOTATION

W\& need 10 destribe the transfer of information from one location in the computer t another. Possible locations that may be involved in such
transfers are memory locations, processor registers, or registers in the /O subsystem. The memory location is identified by a symbolic name.For
example names for the addresses of memory locations may be LOC PLACE, A MARZ; processor register narmes may be RO, R5; and O register
names may be DATAIN, OUTSTATUS, and so on. The contents of a location are denoted by placing souare brackets around the name of the
location. Thus, the expression

R1<[LOC]

meansthat the contents of memory location LOC are transferred into processor register R1.

As anather example, consider the operation that adds the contents of registers R1 and R2, and then places their sum into register R3. This action is
indiicated as
R3—[Ri]+ [RZ]

This type of notation is known as Register Transfer Notation (RTN). Note thet the right-hand side of an RTN expression always denotes a value,
and the left-hand sice is the name of a location where the value isto be placed

ASSEMBLY LANGUAGENOTATION

W& need anather type of notation to repress ent mechine instructions and programs. For this, we use an assembly language formet. For example, an
instruction that causes the transfer described above, from memory location LOC to processor register R1, isspecified by the statement

Mowe LOCR1

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register R1 are overvritten.

The second example of adding two numbers contained in processor registers R1 and R2 and placing their sum in R3 can be specified by the
assambly language statement

AddR1R2R3

BASICINSTRUCTIONTYPES

The operation of adding two numbers isa fundamental capability in any computer. The statement

C=A+B

ina highHevel language program isa command to the computerto add the current values of the two variables called Aand B, and to assign the sum
toa third variable, C. When the program containing this stetement is compiled, the three varigbles, A, B, and C, are assigned to distinct locations in
the memory. The contents of these locations represert the values of the three variables. Hence, the above highHevel language statement requires the
action

C—A+ Bl

to take place inthe computer. To carty ouit this action, the contents of memory locations Aand B are fetched from the memory and transferred into
the processorwhere their sumis computed. This result is then sent back to the memory and stored in location C.

Let us first assume that this action is to be accomplished by a single machine instruction. Furthermore, assume thet this instruction contains the
memory addresses of the three operands—A, B, and C. Thisthree-address instruction can be represented syrmbolically as

AddABC

Operands Aand B are called the source operands, C is called the destination operand, and Add is the operation to be performed on the operands. A
general instruction of this type hes the formet

Operation Sourcel,Source2 Destiretion

If k bits are needed to specify the memory address of each aperand, the encoded form of the above instruction must contain 3k bis for addressing
purposes in addition to the bits needed to denote the Add operation. Foramodem processor with a 32-bit address space, a 3-address instruction istoo
large to it in one word for a ressonable word length.

Ths, aformet that allows multiple words t be used for a single instruction vwould be needed to represent an instruction of this type. An altemative
approach is o use a sequence of simpler instructions to perform the same task, with each instruction having only one or two operands. Suppose thet
wo-addressinstructions of the form

Operation Source,Destination are available. An Add instruction of thistype is

AddAB

which performs the operation B<—{A] + [B]. When the sumis calculated, the result is sent to the memory and stored in location B, replacing the
original contens of this location. This means thet: operand B is both a source and a destination.

Asingle two-address instruction cannot be used to solve our originel problem, which i o add the contents of locations Aand B, without destroying
either of them, and to place the sum in location C. The problem can be solved by using anather two address instruction that copies the conterts of
onememory location into ancther. Suchan instruction is

MoweBC

which performs the operation C<—{B}, leaving the contents of location B unchanged. The operation C—[A] + [B] cannow be performed by the
two-Hinstruction sequence

MoweBC

AddAC

W\& have defined three- and two-addiress instructions. But, even two-address instructions will nat nomnelly fit into one word for usuial word lengths
and addresssizes.

Anather possibility is to have machine instructions thet specify only one memory operand. VWhen a second aperand is needed, as in the case of an
Add instruction, it is undersiood implicitly t be in a unique location. A processor register, usLilly called the accumulator; may be used for this
purpose. Thus, the one-address instruction

AddA

mears the following: Add the contents of memory location A to the contents of the accumulator register and place the sum back into the
accumulator. Let usalso infroduce the one-address instructions

LoadA

ad

SoreA

The Load instruction copies the contents of memory location A into the accumulator, and the Store instruction copies the contens of the
accumulator into memory location A Using only one-address instructions; the operation C<—{A}H+ [B] can be performed by executing the
sequence of instructions

LoadA

AddB

SoreC

Note thet the operand specified in the instruction may be a source or a destination, depending on the instruction. In the Load instruction, address A
specifies the source operand, and the destination location, the accumulator, is implied. On the other hand, C denotes the destination location inthe
Store instruction, whereas the source, the acoumullator, is implied.

Some eary computers were designed around a single accumulator structure. Most modem computers have a number of general-oupose
processor registers—typically 8 t 32, and even considerably more in some cases. Aocess to data in these registers is much faster than to data stored
in memory locations becauise the registers are inside the processor. Because the number of registers is relatively small, only a few bits are needed to

pecify which register takes part in an operation. For example, for 32 registers, only 5 bits are needed. This is much less than the number of bits
needed to give the address of a location in the memory. Because the use of registers allows faster processing and results in shorter instructions,
registers are used to store data termporarily in the processor during processing.

Let Ri represent ageneralpurpose register. The instructions

LoadARi

SoreRi,A

ad

AddARI

are generalizations of the Loed, Store, and Add instructions for the single-accumulator case, in which register Ri perfors the function of the
accumulator. Even in these cases, when only one memory address is directly specified inan instruction, the instruction may not fit into one word.
When a processor hes several generalpurnpose registers, many instructions involve only operands thet are in the registers. In fact, in marny modem
processors, compuitations can be performed directly only on data held in processor registers. Instructions such as

AdIRIR]

or

AddRIR Rk

are of thistype. In both of these instructions, the source operands are the contents of registers Ri and R . In the first instruction, Rj also senves asthe
destination register, wheress in the second instruction, a third register, Rk, is used as the destination. Such instructions, where only register names are
contained inthe instruction, will normallyfitinto onewvord.

In processors where arithimetic operations are allovved only on operands that are in processor registers, the C= A+ B task canbe performed by the
instruction sequence

MoveARI

MoweBRj

AdIRIR]

MoweRjC

In processors where one operand may be in the memory but the other must be in a register, an instruction sequeence for the required task would be
MoveARI

AddBRi

MoweRiC

The speed with which a given task is carried out depends on the time it takes to transfer instructions from memory into the processor and to acoess
the operands referenced by these instructions. Transfers thet involve the memory are much slower than transfers within the processor. Hence, a
substantial increase inspeed is achieved when several operations are performed in sucoession on data in processor registers without the need to copy
data to or fromthe memory, VWhen mechine language programs are generated by compilers from highHevel languages, it is important to minimize
the frequency with which data is moved back and forth betvween the memory and processor registers.

VA& have discussed three-, two-, and one-address instructions. It is also possible to use instructions in which the locations of all operands are defined
impilicitly: Such instructions are found in machines tht store operands in a structure called a pushdown stack: In this case, the instructions are called
Zero-addressinstructions.

INSTRUCTION EXECUTIONAND STRAIGHT-LINE SEQUENCING

Consider theinstruction C<— [A]+ [B]

Figure shows a possible program segment for this task as it appears in the memory of a computer; Ve have assumed that the computer allows one
memory operand per instruction and has a number of processor registers. e assume that the word length is 32 bits and the memory is byte
addressable. The three instructions of the program are in sucoessive word locations, starting at location i. Since each instruction is 4 bytes long, the
second and third instructions siart at eddressesi+ 4andi+ 8.

Figure 28 A progrom for C <— [A] + [B].

Let us consider how this program is executed. The processor contains a register called the program counter (PC), which holds the address of the
instruction to be executed next. To begin executing a program, the adaress of its first instruction (i in our exarmple) must be placed into the PC. Then,
the processor control circuits use the informetion inthe PC to fetch and execute instructions, one at atime, in the order of increasing addresses. Thisis
called straight-line sequencing. During the execution of each instruction, the PC is incremented by 4 to point to the next instruction. Thus, after the
Mowe instruction at location i + 8 is executed, the PC contains the value i + 12, which s the address of the first instruction of the next program
Sgment

Executing a given instruction is atwo-phase procedure. Inthe first phase, called instruction fetch, the instruction is fetched from the memory location
whose addressisinthe PC. This instruction is placed in the instruction register (IR) inthe processor. At the Start of the second phase, called instruction
execute, the instruction in IR is examined 1 determine which operation s o be performed. The specified operation is then performed by the
processor. This often involves fetching operands from the memory or from processor registers, performing an arithmetic or logic operation, and
storing the result in the destination location. At some point during this two-phase procedure, the contents of the PC are advanced to point to the next
instruction. When the execute phase of an instruction is completed, the PC contains the adidress of the next instruction, and a new instruction fetch
phase canbegin.

BRANCHING

Corsider the task of adding a list of n numbers. The addresses of the memory locations containing the n numbers are symbolically given as
NUML, NUM2, ..., NUMn, and a separate Add instruction is used to add each number to the contents of register RO, After all the numbers have
been added, the result is placed inmemory location SUM.

Instead of using a long list of Add instructions, it is possible to place a single Add instruction ina program loop. The loop isastraight-line sequence of
instructions executed as many times as needed!. It starts at location LOOP and ends at the instruction Branch>0. During each pass through this loop,
theaddress of the next listentry is determined, and that entry is fetched and added to RO.

i Move MNUMIRO
i+4 Add NUM2.RO
i+ 8 Add NUM3. RO
i+4n—4 Add MNUM# RO
i+4n Move ROSUM
SUM

NUMI

NUM2

NUMan

Figure 2.9 A straight-line program for
adding n numbers.

Move N.R1
Clear RO
" LooP
Determine address of
~— "Next” number and add
Program "Mext" number to RO
loop
Decrement R
Branch=0 LOOP
Move R0.5UM
SUM
N il
NUMI
NUM2
NUMn

Figure 2.10 Using a loop te add n numbers.

Asume that the number of entries inthe list, n, is stored in memory location N, as shown. Regiister R1 is used as a counter to determine the number
of times the loop is executed. Hence, the contents of location N are loaded into register R1 at the beginning of the program. Then, within the bodly of
the loop, the instruction Decrement R1 reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the
result of the decrement operation is greater than zero.

W& now introduce branch instructions. This type of instruction loads a new value into the program counter: As a resuitt, the processor fetches and
execues the instruction at this new address, called the branch target, instead of the instruction at the location that follows the branch instruction in
sequential address order. A conditional branch instruction caLses a branch only if a specified condition is satisfied. If the condition is not satisfied, the
PCisincremented inthe nomnal way, and the next instruction in sequential address order is fetched and execited.

Inthe program, the instruction

Branch>0LOOP

(branch if greater than 0) is a conditional branch instruction that causes a branch to location LOORP if the result of the immediately preceding
instruction, which is the decrermented value in register R1, is greater than zero. This means that the loop is repeated as long as there are entries in the
list that are yet to be added to RO. At the end of the nth pass through the loop, the Decrement instruction produces a value of zero, and, hence,
branching does ot ocour. Instead, the Move instruction is fetched and executed. itmoves the final result from RO into memory location SUM.

CONDITION CODES

The processor keeps track of information aboit the resuls of various operations for use by subsequent conditional branch instructions. This is
accomplished by recording the required information in individual bits, often called condiition code flags. These flags are usuially grouped together in
aspecial processor register called the condiition code register or statuis register. Individual condiition code flags are set o 1 or cleared to 0, depending
onthe outcome of the operation performed.

Fourcommonly used flagsare

N (negative) Setto 1 if the resuitt is negative; otherwise, cleared to 0

Z (zero) Setio L ifthe resullt is O; otherwise, Cleared to 0

V (overflow) Setto 1 if arithmetic overflowoocurs; otherwise, cleared 00
C(cany) Setto 1 if acamy-out results from the operation; otherwise, cleared to O

The N and Z flags indicate whether the result of an arithmetic or logic operation is negative or zero. The N and Z flags may also be affected by
instructions thet transfer date, suich as Move, Load, or Store. This makes it possible for a later conditional branch instruction to cause a branch besed
onthesignand value of the operand thatwas moved. Some computers also provide aspecial Test instruction that examines avalue inaregister or in
the memory and sets or clears the N and Z flags accordiingly: The V flag indlicates whether overflovw hes taken place. An overflowoccurswhenthe
result of an arithmetic aperation is outside the range of values that can be represented by the number of bits available for the operands. The processor
satsthe Vflag o allowthe programmer to testwhether overflow has occurmed and branch to an appropriate routine that comects the problem.

The Cflagissetto 1 ifacamy oocurs fromthe most significant bit position duringanarithmetic operation.

ADDRESSINGMODES

Thedifferentways inwhich the location of an operand is specified inan instruction are referred o as addressing modes.

IMPLEMENTATION OF VARIABLESAND CONSTANTS

\ariablesand corstarnts are the simplest data types and are found inalmast every computer program. Inassembly languiage, a variable is represented
by allocating a register or amemory location to hold its value. This results intwo modes.

Register mode— The operand is the contents of a processor register; the name (adalress) of the register is given in the instruction.

Absolute mode — The gperand is in a memory location; the address of this location is given explicitly in the instruction. (In some assembly
languages, thismode is called Direct)

Theinstruction

Move LOCR2

uses these two modes. Processor registers are uised as temporary storage locations where the data in a register are acoessed using the Regiister mode.
The Absolute mode can represent global variables inaprogram.

Next, let us consider the representation of constarnts. Address and data constants can be represented in assembly language using the Immediate
mode.

Immediate mode— The operand isgiven explicitly in the instruction. For example, the instruction

Move 200immediate, RO

places the value 200 in register RO. Clearty; the Immediate mode is only used to specify the value of a source operand. Using a subscript to denote
the Immediate mode is not appropriate inassembly languages. Acommon convention is to use the sharp sign (#) in front of the value to indicate thet
this value isto be used as an immediate operand.

Hence, we write the instruction above inthe form

Move#200R0

Congtant valuesare used frequently in high-evel language programs. For eximple, the statement

A=B+6

contains the constant 6. Assuming that A and B have been declared earlier as variables and may be accessed using the Absolute modke, this
daterment may be compiled as follows:

MoweBR1

Add#6R1

MoveRLA

In the some addressing modes , the instruction does not give the aperand or its address explicitly: Instead, it provides informetion from which the

memory address of the operand can be determined. Ve refer to this address as the effective address (EA) of the operand.

Indirect mode — The effective address of the operand is the contents of a register or memory location whose address gppears in the instruction. \WWe
denate indirection by placing the name of the regjister or the memory address given in the instruction in parentheses as illustrated

Add (RI1).RO Add (ALROD
Main
memory
B Operand A B
Rl I B Register B Operand

(&) Through a general-purpose register (b) Through a memaory location

Toexecute the Add instruction in Figure a, the processor uses the value B, which is in regjister R1, as the effective address of the operand. It requesisa
read operation from the memory to reed the cortierts of location B. The value reed is the desired operand, which the processor adds to the contents
of register RO.

Indirect addressing through a memory location is also passible as shown in Figure b. In this case, the processor first reads the corntents of memory
location A, then requests a second read operation using the value B as an address to obtain the operand.

Address Contents

Move N.E1
Move #NUMI.R2 Initialization
Clear RO

—= LOOP Add (R2),R0
Add #1.R2
Decrement Rl
Branch=0 LOOP
Move ROSUM

Figure 2.12 Use of indirect addressing in the program of Figure 2.10.

The register or memory location thet contains the adalress of an operand is called a pointer. Indirect addressing can be used to aocess sucoessive
numbers in the list, resulting in the program shown in Figure 2.12. Register R2 is used as a pointer to the numbers in the list, and the operands are
acoessed indirectly through R2. The initialization section of the program loads the counter value n from memory location N into R1 and uses the
Immediate addressing mode to place the address value NUML, which is the address of the first number in the list, into R2. Then it dlears RO 0.
Thefirsttime through the loop, the instruction

Add(R2)RO

fetches the operand at location NUM 1 and adds it to RO. The second Add instruction adds 4 to the contents of the: pointer R2, o that it will contain
the address value NUM2 when the above instruction is executed in the second pass through the loop.

INDEXINGANDARRAYS

Itis useful indealing with listsand armays.

Index mode — The effective adaress of the operand is generated by adding a constant value to the contents of a register. The register used may be
either a Special register provided for this purpose, or, more commonly; it may be any ore of a set of general-purpose registers in the processor. In
either case, itis referred to asan index register. Ve indicate the Index mode symbolically as

XRi)

where X denotes the constant value cortiained in the instruction and Ri is the name of the regjister involved. The effective address of the operand is
givenby

EA=X+[Ri]

The contents of the index register are not changed in the process of generating the effective address.

Inanassembly language program, the constant X may be given either as an explicit number or asa symbolic rame representing anumerical value.
Whenthe instruction is translated into mechine code, the constant X is given as a part of the instruction and is usuially represernted by fewer bits then
theword length of the computer:

Add 20(R1).R2

T 1000 I 1000 RI

20 = offset

J— 1020 Ciperand

(a) Offset is given as a constant

Add 1000(R1D.R2

—|— 1000 I 20 R

20 = offset

J— 1020 Operand

(b) Offset is in the index register

Figure 2.13 Indexed addressing.
Figure 2.13 illustrates two ways of using the Index mode. In Figure 2.1:3a, the index register, R1, contains the address of amemory location, and the
valle X defines an ofiet (also called acligplacement) fromihis adiess o the location wherethe operand s fourd.
Analteretive e s llustated in Figure 213, Here, the corsiant X cortesponds a memory adiess, and the contents of the indexcregister cefine
the offset o the operand. Ineiher case, te effective adkress isthe sum of wo vales; one is given explicitly in the instruction, and the other s stored
inaregister.

In general, the Index mode fcilitates acoess to an operand whose location is defined relative o a reference point within the data structure inwhich
the operand appears. Several variations of this basic form provide for very efficient acoess to memory operands in practical programming situiations.
For example, a second register may be used to contain the offset XX inwhich case we can wwrite the Index mode as (RiR j) The effective address is
the sum of the contents of registers Ri and Rj . The second regiister is usually called the base regiister. This form of indexed addressing provides more
flexdbility in acoessing operands, because both components of the effective address can be changed.

RELATIVEADDRESSING

Avariation of index AM is Relative addressing mode. Here program counter, PC, is used instead of a general purpose register. Then, X(PC) canbe
used to addressa memory location thet is X bytes away from the location presently pointed to by the program counter: Since the addressed location
is identified “felative” to the program counter, which always identifies the curment execution point in a program, the name Relative mode is
associated with this type of addressing.

Relative mode— The effective addiress is determined by the Index mode using the program counter in place of the generalpurpose register Ri.
Thismode can be used to aooess data operands. Bt its most common use is to specifyy the target address in branch instructions. An instruction such
S

Branch>0LOOP

CaLses program execution to go to the branch target location identified by the name LOOR if the branch condition is satisfied. This location can be
compuited by specifying itas an offset from the current value of the program counter: Since the branch target may be either before or after the branch
instruction, the offset is given as a signed number.

Recall that during the execution of an instruction, the processor increments the PC to point to the next instruction. IMiost computers use this updated
value in computing the effective address in the Relative mode. For example, suppose that the Relative mode is used to generate the branch target
address LOORP in the Branch instruction of the program .Assume that the four instructions of the loop body; starting at LOOR, are located at
memory locations 1000, 1004, 1008, and 1012. Hence, the updated contents of the PC at the time the branch target address is generated will be
1016. To branchto location LOOP (1000), the offset value needed is X =—16.

ADDITIONAL MODES
Many computers provide additional modes intended to aid certain programiming tesks. The two modes described next are useful for accessing data
items in sucoessive locations inthe memory.

Autincrement mode— The effective address of the operand is the contents of a register specified in the instruction. After accessing the operand, the
contents of this register are autormetically incremented to point to the next item in a list. Ve denote the Aitoincrement mode by puitting the specified
register in parentheses, to show thet the contents of the register are used as the effective address, followed by a plus sign to indicate thet these contents
areto be incremented after the operand isacoessed. Thus, the Aitincrement modke is wiitten as

Ry

Implicitly; the increment amount is 1 when the mode is given in this form. But in a byte addressable memory; this mode would only be useful in
aooessing successive bytes of some list. To aocess successive words ina byte-addressable memory with a 32-bit word length, the increment mustbe
4. Computers that have the Autoincrement mode autoretically increment the conterts of the register by a value that cormesponds o the size of the

aocessad operand. Thus, the increment is 1 for byte-sized operands, 2 for 16-hit operands, and 4 for 32-bit operands. Since the size of the operand is
usually specified as part of the operation code of an instruction, it is sufficient o indicate the Avitoincrement mode as (Ri)+

Asacompanion for the Autoincrerment mode, another useful mode accesses the items of a list inthe reverse order

Autodecrement mode— The contents of a register specified in the instruction are first automatically decremented and are then used as the effective
address of the operand. V\e denote the Autodecrement mode by putting the specified register in parentheses, preceded by a minus sign to indicate
thet the contents of the register are to be decremented before being used as the effective address. Thus, we wite

-(Ri)

In this mode, operands are acoessed in desoending address order: These two modes can be used together to implerment an important data structure
calledastack

ASSEMBLY LANGUAGE Read by yourself

ASSEMBLER DIRECTIVES Read by yourself

NUMBERNOTATION

When dealing with numerical values, itis often convenient to use the familiar decimal notation. Of course, these values are stored in the computer as
binary numbers. In some situations, it is more corvenient to specifyy the binary pattems directly. IMost assemblers allow numerical values to be
specified in differert weys, using conventions that are defined by the assermbly language syntax. Consider, for example, the number 93, which is
represented by the 8-t binary number 01011101. If this value is to e used as an immediate operand, it can be given as a decimal number, asinthe
instruction

ADD#33R1

orasabinary number identified by a prefix symbol such asa percent sign, asin

ADD#%01011101,R1

Binary numbers can be witten more compactly as hexadecimal, or hex, numbers, in which four bits are represented by a single hex digit. The hex
nofation is adirect extension of the BCD code given in Appendix E. The first ten petiems 0000, 0004, ..., 1001, are represented by the diigits 0, 1, ..
,9,asin BCD. The remaining six 4-bit petterms, 1010, 1011, ..., 1111, are represented by the letters A, B,, F; In hexadecimal representation, the
decimal value 93 becormes 5D. In assembly languiage, a hex representation is often identified by a dollar sign prefix. Thus, we would wite ADD
#$DR1

BASIC INPUT/OUTPUT OPERATIONS

\\& now consider the data transfer between the memory of a compuiter and the outside world. InpuifOutput (1/0) operations are essential, and the
way they are performed can have asignificant effect on the performance of the computer. Here, we introduce a few besic idkas.

Consider a task that reads in cheracter input from a keylboard and produces cheracter output on adisplay screen. Asimple way of perforrming such
VO tasks is o use a method known as program-controlled YO, The rate of dta trarsfer from the keyboard to a computer is limited by the typing
spead of the user; which is nlikely o exceed a few cheracters per second. The rete of output trarsfers from the computer t the display is much
higher. It is determiined by the rate at which cheracters can be trarsmitted over the lirk between the computer and the display device, typically
several thousand cheracters per second. However, this is stll much slower than the speed of a processor thet can execte rrany milliors of

instructions per second. The difference in speed between the processor and /O devices creates the need for mechanisms to synchronize the transfer
of data between them.

Bus

Processor DATAIN DATAOUT \

j SINM L SOUT

Keyboard Display

Figure 2.19 Bus connection for pracessor, keyboard, and display.

Asolution to this problem is as follows: On output, the processor sends the first character and then wits for a signal from the display tht the
character has been received. It then sends the second character; and so on. Input is sent from the keyboard in asimilar wey; the processor waits for a
signal indiicating thet a character key hes been struck and thet iits code is availeble in some buffer register associated with the keyboard. Then the
processor proceeds to reed that code. The keyboard and the display are separate devices as shown in Figure 2.19. The action of strikinga key onthe
keyboard does not autormetically cause the cormesponding character to be displayed on the screen. One block of instructions in the /O program
transfers the character into the processor, and another associated block of instructions causes the character to be displayed.

Consider the problem of moving a character code from the keyboard to the processor. Striking a key stores the corresponding character code inan
8hit buffer register associated with the keyboard. Let us call this register DATAIN, as shown in Figure 2.19. To inform the processor that a valid
character isin DATAIN, astatus control flag, SIN, is setto 1. Aprogram monitors SIN, and when SIN is set o 1, the processor reads the contents of
DATAIN. When the character iis transferred 1o the processor; SIN isaLipmaticallly cleared 1o 0. f a seoond character is entered at the keyboard, SIN
isaggainset to 1.and the process repests.

An analogous process takes place when characters are transfer mred from the processor to the display: A buffer register, DATAOUT, and a siatus
control flag, SOUT, are used for this transfer. When SOUT equals 1, the display is readly to receive a character. Under program control, the
processor monitors SOUT, and when SOUT is set 1o 1, the processor transfers a character code to DATAOUT. The transfer of a character to
DATAQUT dlears SOUT to 0; when the display device is ready to receive a second character, SOUT is aggin set o 1. The buffer registers
DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry commonly known as a device interface. The circuitry for each
device isconnected to the processor viaalus, as indicated in Figure 2.19,

Inorder to perform IO transfers, we need machine instructions that can check the state of the Status flags and transfer data befween the processor and
the /O device. These instructions are similar in formet to those used for moving data between the processor and the memory: For example, the
processor can monitor the keyboard status flag SIN and transfer a character from DATAIN to register R1 by the following sequence of aperations:
READWAIT Branchto READWAIT if SIN=0

Inputfrom DATAIN o R1

The Branch operation is usually implemented by two mechine instructions. The first instruction tests the status flag and the second perfors the
branch.

Ananalogous sequence of operations is used for transfening output to the display. An example is
WRITEWAIT Branchto WRITEWAIT if SOUT=0

CuiputfromR1 o DATAOUT

Aggin, the Branch aperation is nommally implermented by two machine instructions. The weit loop isexecuted repeatedly until the status flag SOUT
issetto 1 by the display whenitis free to receive a character. The Output operation transfersa cheracter from R1 to DATAOUT tobe displayed, and
itclears SOUT 1.

W\ assume thet the initiel state of SIN is 0 and the initiel state of SOUT is 1. This initialization is nommally performed by the device control circuits
when the devices are placed under computer control before program execution begins. Until now; we have assumed thet the addresses issued by
the processor to access instructions and aperands always refer to memory locations. Marny computers use an arrangement called memory-mapped
1 /0 inwhichsome memory address values are used to refer to peripheral device buffer registers, such as DATAIN and DATAOUT.

Thus, no special instructions are needed 1 access the contents of these registers; data can be transferred between these registers and the processor
using instructions that we have already discussed, such as Move, Load, or Store. For example, the contents of the keyboard character buffer
DATAIN can be transferred to register R1 in the processor by the instruction

MowveByte DATAIN,RL

Similarty; the conterts of register R1 can be transferred to DATAOUT by the instruction

MoveByte R1LDATAOUT

The status flags SIN and SOUT are automatically cleared when the buffer registers DATAIN and DATAQUT are referenced, respectively: The
MoveByte operation code signifies that the operand size is a byte, to distinguish it from the operation code Move that hes been used for word
operands.

It is possible to deal with the statLs flags SIN and SOUT in the same way, by assigning them distinct addresses. However, it is more common to
include SIN and SOUT in device stats registers, one for each of the two devices. Let us assume that bit b3 in registers INSTATUS and
OUTSTATUS corresponds to SIN and SOUT, respectively: The read operation just described may now be implermented by the machine
instruction sequence

READWAIT Testhit#3,INSTATUS

Branch=-0READWAIT

MoveByte DATAINRL

Thewite operation may be implemented as

WRITBWAIT Testhit#3 OUTSTATUS

BrandhFOWRITEWAIT

MoveByte R1.DATAOUT

The Testhit instruction tests the state of one bit in the destination location, where the it position to be tested is indlicated by the first operand. If the bit
tested is equal to 0, then the condiition of the branch instruction is true, and a branch is mace to the beginning of the wait loop. When the device is
readly, that is, when the bit tested becomes equial to 1, the data are read from the inpuit buffer or vwritten into the output buffe:

The program shown in Figure 2.20 uses these two operations to read a line of characters typed at a keyboard and send them out to adisplay device.
Asthe characters are read in, one by one, they are stored in a data area inthe memory and then echoed back out to the display.

Mowe# OCRO Initialize pointer register ROto point o the
address of the first location inmemory
where the charactersare to be stored.

READ TesBit#3INSTATUS Wit foracharacter tobe entered

Brand=0READ inthe keyboard buffer DATAIN.

MoveByte DATAIN,(R0) Transfer the character fron DATAIN into
the memory (this clears SINi 0).

ECHO TestBit#3OUTSTATUS Wit for the display to becorme readly:

Branch=-0ECHO

MoveByte (R0),DATAOUT Move the character just read to the diisplay
buffer register (this clears SOUT 10 0).

Compare#CR (ROM+ Checkifthe character justread isCR
(camiage retum). Ifitisnot CR, then

Branch =O0READ branch back and read another character.

Also, increment the pointer to store thenext character.
Figure 220 Aprogram thet readsa line of charactersand displays it

STACKSAND QUEUES

A computer program often needs to perform a particular subtask using the familiar subroutine structure. In order o organize the control and
information linkage between the main programand the subroutine, a data structure called a stack is used.

Data operated on by a program can be organized in a variety of ways.Consider an important data structure known as a stack Astack is alist of data
elements, usually words or bytes, with the acoessing restriction that elements can be added or removed at one end of the list only: Thisend is called
the top of the stack, and the other end is callled the bottom. Ancther descriptive phrase, last-in-first-out (LIFO) stack, is also used to describe this type
of storage mechanism; the last data item placed on the stack is the first one removed when retrieval begins. The termms push and pop are used to
describe placing a new itemon the stack and removing the top item from the stack, respectively:

Data stored in the memory of acomputer can be organized as a stack, with successive elements oocupying sucoessive memory locations. Assume
thet the first elerment is placed in location BOTTOM, and when new elements are pushed onto the stack, they are placed in successively lower
address locations.

Stack
pointer
register T
] | Current
5P —= -28 = top element
17
739
Stack <
Bottom
| BOTTOM 43 i element

2F

_Figure 2.21 A stack of words in the memory.

Figure 2.21 shows astack of word data items in the mermory of a computer; It contains numerical values, with 43 at the bottom and —28 at the top. A
processor regjister is Used 1o keep track of the address of the elerment of the stack thet is at the top at any given time. This register is called the stack
pointer (SP). It could be one of the general-purpose registers or a register dedlicated o this function. If we assume a byte-addressable memory witha
324hitword length, the push operation can be implemented as

Subract#4,5P

Move NEWITEM,(SP)

where the Subtract instruction subtracts the souroe operand 4 from the destination operand contained in SP and places the result in SP. These two
instructions move the word from location NEWITEM onto the top of the stack, decrementing the stack painter by 4 before the move. The pop
operation canbe implemented as

Move (SP)ITEM

Add#4.SP

These two instructions move the top value from the stack info location IMEM and then increment the stack pointer by 4 so thet it points to the new
topelement

Ifthe processor hes the Auitoincrement and Autodecrerment addressing modes, then the push operation can be performed by the singlle instruction
Move NEWITEM~(SP)
and the pop operation can be performed by

Mowe (SPHTEM

Whenastackis used ina program, it is usuially allocated a fixed amount of space in the memory: In this case, we must avoid pushing an itemonto
the stack when the stack has reached its meximum size. Also, we must avoid attermpting to pop an item off an empty stack, which could result from
a programming eror. Suppose thet a stadk runs from location 2000 (BOTTOM) down no further than location 1500. The stack pointer is loaded
initially with the address value 2004. Recall thet SP is decremented by 4 before newv data are stored on the stack. Henee, an initial value of 2004
means that the first item pushed orto the stack will be at location 2000. To prevent either pushing an item on a full stack or popping anitemoffan
empty stack, the single-instructionpush pop operations can be replaced by the instruction sequences shown in Fig.

SAFEPOFP Compare #2000, 5P Check to see if the stack pointer contains
Branch =0 EMPTYERROR an address value greater thanm 2000, If it

does, the stack i= empty. Branch to the
routine EMPTYERROR. for appropriate
action.

Maowve (sP)+ . ITEM Otherwise, pop the top of the stack into
memory location ITEM.

(a) Routine for a safe pop operation

SAFEPUSH Compare #1500 5P Check to see if the stack pointer
Branch=0 FULLERROR contains an address value equal
to or less than 1500, If it does, the
=tack is full. Branch to the routine

FULLERROR for appropriate action.
Mowve NEWITEM.—(SP) Otherwise. push the element in memory

location NMEWITEM onto the stack.

The Compare instruction
Comparesicdst
performs the operation [dst] — [src] and sets the condition code flags according to the resuit. It does not change the value of either operand.

Another ussful data structure thet is simillar o the tack is called a quevie. Data are stored inand retrieved from a quee on afirst-in-first-out (FIFO)
basis. Thus, if we assume that the queue grows inthe diirection of increasing adalresses in the memory; newv data are added at the badk (highraddress
end) and retrieved from the front (low-eddress end) of the queve.

There are two important differences between howa stack and aqueue are implemented. One end of the stack is fixed (the bottomn), whille the other
end risesand falls as data are pushed and popped. Asingle pointer is needed to point to the top of the stack atany given time. On the other hand, both
endsof aqueue move to higher addresses as dataare added at the badk and removed from the front. So two pointers are needed to keep track of the
twoendsofthe quetie.

Ancther difference between a stack and a queue is thet, without further control, a queue would continuousty move through the memory of a
computer in the direction of higher addresses. One way to limit the queue to a fixed region inmemory isto use a circular buffer. Let us assume thet
memory addresses from BEGINNING to END are assigned to the quieue. The first entry in the queue is entered into location BEGINNING and
successive ertries are gopended to the queLie by entering them at successively higher addresses. By the time the back of the queue reaches END,
space will have been created at the beginning if some items have been removed from the queuie. Hence, the back pointer is reset o the value
BEGINNING and the process continues.

SUBROUTINES

In a given program, it is often necessary to perform a particular subtask many times on different data values. Such a subtesk is usually called a
subroutine. For example, a subroutine may evaluate the sine function or sort a list of values into increasing or decreasing order.

Itis possible to include the block of instructions thet constituite a subroutine at every place where it is needed in the program. However, to save space,
only one copy of the instructions thet constitute the subroutine is placed in the memory; and any program that recuiires the use of the subroutine
simply branches to its starting location. VWhen a program branches to a subroutine we say thet it is calling the subroutine. The instruction that
performs this branch operation is named a Call instruction. After a subroutine has been executed, the calling program must resume execution,
continuing immediately after the instruction that called the subroutine. The subroutine

is said o retum to the program thet called it by executing a Retum instruction. Since the subroutine may be called from differert places ina calling
program, provision must be made for retuming to the appropriate location. The location where the calling program resumes execution is the
location pointed to by the updated PC while the Call instruction is being execuited. Hence, the conterts of the PC must be saved by the Call
instruction t enable correct retum 1o the calling program.The way in which a computer makes it passible to call and retum from subroutines is
referred t as iits subroutine linkage method. The simplest subroutine linkage method is to save the retum address in a specific location, which may
be aregister dediicated to this function. Such a register is called the link register. VWhen the suiroutine completes s task, the Retum instruction retums
o the calling program by branching indiirectly through the link register. The Call instruction is just a special branch instruction that. performs the
following operatiors:

« Sore the contents of the PC inthe link register

* Branchto the target address specified by the instruction

The Retum instruction isa special branch instruction that performs the operation:

* Branch to the address contained in the link regjister

Memory Memory

location Calling program location Subroutine SUB
2040 Call SUB - L 000 first instruction
204 next instruction - i
) Return
(VLN

e []| |

Link | | | 204 |

Call Return

Figure 2.24 Subroutine linkage using a link register.

SUBROUTINE NESTINGAND THE PROCESSOR STACK

Acommon programming practice, called subroutine nesting, is to have one subroutine call another: In this case, the retum adaress of the second call
isalso stored in the link register, destroying its previous contents. Hence, it is essertial to save the corterts of the link register in sorme other location
before calling another subroutine. Otherwise, the retum address of the first subrouttine will be lost

Subroutine nesting can be carried out to any depth. Everttually, the last subroutine called completes its computations and retums to the subroutine thet
called it The retum adadress needed for this first retum is the last one generated in the nested calll sequence. That i, retum adalresses are generated and
used inalast-in-first-out order; Thiis suggests that the retuim addresses associated with subrovitine calls should be pushed ontoasiack.

PARAMETERPASSING

When calling a subroutine, a program must provide to the subroutine the parameters, thet is, the operands or their adcdresses, to be used in the
compuiation. Later, the subroutine retums other parameters, in this case, the results of the comyputation. This exchange of information between a
calling program and a subroutine is referred to as parameter passing. Parameter passing may be accomplished in several ways. The parameters
may be placed in registers or in memory locations, where they can be accessed by the subroutine. Altermatively; the parameters may be placed on
the processor stack used for saving the refum address.

Passing parameters through processor registers is straightforward and efficient.

Calling program

Move N.E1 R1 serves as a counter.
Maove #NUMILR2 R2 points to the list.
Call LISTADD Clall subroutine.

Move RO,STTM Save result,

Subroutine

LISTADD Clear RO Initialize sum to 0.

LOOFP Add (R2)+ RO Add entry from list.
Decrement Rl
Branch=0 LOOP
Heturn Heturn to calling program.

Figure 2.25 Program of Figure 2.16 written as o subroutine; parameters
possad through reqisters.

Figure 2.25 shows how the program for adding a list of numbers can be implemented asa subroutine, with the parameters pessed through registers.
Thesize of the lit, n, contained in memory location N, and the address, NUML, of the first numbe; are passed through registiers R1 and R2. The
sum computed by the subroutine is passed back to the calling program through register RO. The Call instruction branches to the subroutine starting
at location LISTADD. This instruction also pushes the retum address orto the processor stack. The subroutine computes the sum and places it in
RO.After the retim operation is performed by the subroutine, the sum is stored in memory location SUM by the calling program.

If many parameters are involved, there may nat be enough generakpurmose registers available for passing them to the subroutine. Using a stadk, on
the ather hand, is highly flexible; a stack can handle a large number of parameters. The following exanple illustrates this approach. Figure 2.26a
showsthe program, LISTADD, which can be called by any other programto add a list of

numbers. The parameters passed to this subroutine are the address of the first number in the list and the number of entries. The subroutine performs
the addition and retums the computed sum. The parameters are pushed onto the processor stack pointed to by register SP. Assurme thet before the
subroutine is called, the top of the stack is at level 1 in Figure 2.260.

Assume top of stack 1= at level 1 below.

Move HMNUMI1.—(5P) Push parameters onto stac
Maove N.—(8P)
Call LISTADD Call subroutine
(top of stack at level 2).
Move 4{=5P),5TUM Save result.
Add #ESP Hestore top of stack
(top of stack at level 1).
LISTADD MoveMultiple RO-R2.—(SFP) Save registers
(top of stack at level 3.
Move 16(5P).R1 Initialize counter to n.
Move 20(5F).R2 Initialize pointer to the list
Clear RO [nitialize sum to 0.
LOOP Add (R2Z)+ RO Add entry from list.
Decrement R1
Branch=0 LOOP
Move RO,20(8F) Put result on the stack.
MoveMMultiple (SP)4+ . RO-R2 Hestore registers.
Heturn Heturn to calling program.

(a) Calling program and subroutine

Level 3 —» [R2]
[R1]

[RO]

Level 2 —

Return address

i

NUMI

Level 1l —

(b) Top of stack at various times

Figure 2.26 Progrom of Figure 2.16 written as a subroutine; parameters passed
on the stack.

Thecalling program pushes the address NUM and the value n onto the stack and calls subroutine LISTADD. The Call instruction also pushes
the retum address onto the stack. The top of the stack is now at level 2. The subroutine uses three registers. Since these registers may contain valid
data thet belong to the calling program, their contents shoulld be saved by pushing them onto the stack. Ve have used a single instruction,
MoveMulttiple, to store the contents of registers RO through R2 on the stack. Many processors have such instructions. The top of the stack isnowvat
level 3. The subroutine accesses the parameters n and NUML from the stack using indexed addressing. Note thet it does not change the stack
pointer because valid data iters are till at the top of the stack. The value n is loedeed into R1 as the initial value of the count, and the address NUML
is loaded into R2, which is used asa pointer to scan the list entries. At the end of the computation, register RO contains the sum. Before the subroutine
retums 1o the calling program, the contenits of RO are placed on the stack; replacing the parameter NUML, which is no longer needed. Then the
contents of the three registers used by the subroutine are restored from the stack Nowv the top item on the stack is the retum address at level 2. After
the subroutine retunms, the calling program stores the result in location SUM and lowers the top of the stack to its original level by incrementing the
SPhys.

Parameter Passing by Value and by Reference

Note the neture of the two parameters, NUML and n, passed to the subroutines in Figures 2.25 and 2.26. The purpose of the subroutines isto add a
list of numbers. Instead of passing the actual list entries, the calling program passes the address of the fiirst number in the list. This technique is called
passing by reference. The second parameter is passed by value, thet is, the actuial number of entries, n, is passed to the subroutine.

THESTACKFRAME

During execution of the sibroutine, six locations at the top of the stack contain entries thet are needed by the subrouttine. These locations consitute a
private work space for the subroutine, created at the time the suibroutine is entered and freed up when the suibroutine refuims control to the calling
pogam. Such e s clled a dak frame If the sbroutine requires more space for local

- e R

\
[stacks[;imerj - saved [R1]
saved [RO]
localvar3
localvar2
localvarl fSLaCk
rame
[frﬂmeF[:f.Dimerj saved [FFP] ’ c;':]ﬁ; ;
Return address subroutine
paraml
param?2
param3
paramd
/
-—— Old TOS

Figure 2.27 A subroutine stack frame example.

emor y variables, they
canalso beallocated onthe stack.

Figure 2.27 shows an example of a commonly used layout for information in a stack frame. In addition to the stack pointer SP, it is useful to have
another pointer register; called the frame pointer (FP), for convenient access to the parameters passed to the subroutine and to the local memory
variables used by the subroutine. These local variables are only used within the subroutine, so it is appropriate o allocate space for them inthe stadk
frame associated with the subroutine. In the figure, we assume thet four parameters are passed to the subroutine, three local variables are used within
the subroutine, and registers RO and R1. need to be saved because they will also be used within the subroutine.

With the FP regjister pointing to the location just above the stored refum address, as shown in Figure 2.27, we can essily access the parameters and
the local variables by using the Index addressing mode. The parameters can be acoessed by using addresses 8(FP), 12(FP), The local variables
can beacoessed by using addresses —4(FP), —8(FP), The contertis of AP remaiin fixed throughouit the execution of the subbroutine, unlike the stack
poirtter SP,which must always point to the current top element in the stack.

Assume that SP points to the old top-of-stack (TOS) element in Figure 2.27. Before the subroutine is called, the calling program pushes the four
parameters onto the stack. The Call instruction is then executed, resulting in the retum address being pushed onto the stack. Now; SP points to this
retum address, and the first instruction of the subroutine is aboutt to be executed. This is the point at which the frame pointer FP is set o cortain the

proper memory address. Since FP is usually a generalpurpose register; it may contain information of use to the calling program. Therefore, its
contentsare saved by pushing them onto the stack. Since the SP now pointsto this pasition, its contents are copied into AP

Thus, the firsttwo instructions execuited in the subroutine are

Move FP—(SP)

Move SPFP

After these instructions are executed, both SPand FP point to the saved FP contertts.

Spece for the three local variables is nowallocated on the stack by executing the instruction

Subtract#12.5P

Firally, the contents of processor registers RO and R1 are saved by pushing them orio the stack. At this point, the stack frame hes been setup as
showninthefigure.

The subroutine now executes its task. VWhen the task is completed, the subroutine pops the saved values of R1 and RO back into those registers,
removes the local variables from the stack frame by executing the instruction

Add#12.5P

and pops the saved old value of FP back into FP. At this point, SP points to t he retum address, so the Retum instruction canbe executed, transferring
control beck to the calling program.

The calling programiis responsible for removing the parameters from the stack frame, some ofwhich may be results passed back by the subroutine.
The stack pointer nowpointsto the old TOS.

Stack Frames for Nested Subroutines : read by yourself

Additional instructions : Read by yourself
ENCODINGOFMACHINE INSTRUCTIONS

W\ have introduced a variety of useful instructions and addressing modes. These instructions specify the actions that must be performed
by the processor circuitry to carmy out the desired tasks. Ve have often referred to them as machine instructions. Actually; the forminwhich
we have presentted the instructions is indiicative of the forms used in assembly languiages. To be execuited ina processar, an instruction must
be encoded ina compact binary pattem. Such encoded instructions are propery referred to asmachine instructions. The instructions that
use symbolic names and acronyms are called assembly language instructions, which are converted into the machine instructions using the
assembler program.

In the previous sections, we made a simplifying assumption that all instructions are one word in length. Since we usually refer to 32-bit
words, our assumption implies that this length is adequiate to represent the necessary information. Let us noww consider the validity of this
assumption.

W& have seen instructions that perform operations such as add, subtract, move, shift, rotate, and branch. These instructions may use
operands of different sizes, such as 32-bit and 8-hit numbers or 8-hit ASClI-encoded characters. The type of operation thet is to be
performed and the type of operands used may be specified using an encoded binary patiem referred to as the OPcode for the given
instruction. Suppose that 8 bits are allocated for this purpose, giving 256 possibilities for specifying different instructions. This leaves 24 bits
to specify the rest of the requiired informetion.

Letusexamine some typical cases. The instruction

AddR1R2

has to specify the registers R1 and R, in addition to the OP code. I the processor has 16 regiisters, then four bits are needed to identify each
register. Additional bits are needed to indicate that the Register addressing mode is used for each operand.

Theinstruction

Move 24(R0)R5

requires 16 bits to denote the OP code and the two registers, and some bits o express that the source operand uses the Index addressing
mode and thet the index value is 24.

Suppose that three bits are used to specify an addressing mode . Then si bits have to be available for this purpose, denoting the chosen
addressing modes of the source and destination operands. Hence, there are 10 bits left to give the index value. If these 10 bits suffice to
express an adequate range of signed numbers for indexing purposss, thenthe instruction fits into our 32-bitword.

Theshiftinstruction

LshiftR#2R0

and the move instruction

Mowe#53ARL

have to indiicate the immediate values 2. and $3A, respectively in addition to the 18 bits used to specifyy the OP code, the addressing mookes,
and the register. This limits the size of the immediiate operand to what isexpressible in 14 bits.

Consider next the branch instruction

Branch>0LOOP

Aggin, 8 bits are used for the OP code, leaving 24 bits to specifyy the branch offset. Since the offset is a 2 s-complement number, the branch
target address must be within 22bytes of the location of the branch instruction. To branch to an instruction outsice this range, a diifferent
addressing mode has to be used, such as Absolute or Register Indirect. Branch instructions that use these modees are usually called Jump
instructions.

Inall these examples, the instructions can be encoded ina 32-bitword. Figure 2.3% depicts apassible formet

8 7 7 1o

OF code Source Dest Other info

(a) One-word instruction

OP code Source Dest Other info

Memory address/Immediate operand

{b) Two-word instruction

OF code Ri Rj Rk Other info

{c) Three-operand instruction

Figure 2.39 Encoding instructions into 32-bit words.

There is an 8-it OP-code field and two 7-bit fields for specifying the source and destination operands. The 7-bit field identifies the
addressing mode and the register involved (if any). The *Other info” field allows us to specify the additional information that may be
needed, suchasan index value or an immediate operand.

But, what happens if we want to specify a memory operand using the Absolute addressing mode? The instruction

MoveR2LOC

requires 18 hits to denote the OPcode, the addressing modes, and the register. This leaves 14 bits to exress the address that cormresponds to
LOC, which is clearly insufficiernt. If we wart to be able to give a complete 32-hit address in the instruction, then the only solution is to
include a second word as a part of this instruction, in which case the additional word can contain the required memory address. Asuitable
format is shown in Figure 2.3%. The first word may be the same as in part a of the figure. The second is a full memory address. This
format can also acoommodate instructions such as

And#$FF000000R2

in which case the second word gives a full 32-bit immediate aperand. i we want to allow an instruction in which two operands can be
specified using the Absolute addressing mode, forexample

Mowve LOCLLOC2

then it becomes necessary to use two additional words for the 32-bit addresses of the operands. This approach resulis in instructions of
variable length, dependent on the number of operands and the type of addressing modes used. Using multiple words, we can implement
quite complex instructions, closely resembling operations in high-evel programming languages. The term complex instruction set
computer (CISC) hesbeen

used to refeer to processors that use instruction sets of this type.

There exists a redically different altemetive to this approach. If we insist that all instructions must fit into a single 32-bit word, it is not
passible to provide a 32-hit address or a 32-hit immediate operand within the instruction. But, it s still possible to define a highly functional
instruction set, which makes extensive use of the processor registers. Thus, we canhave

AddR1R2

butnot

AddLOCR2

Instead of the latter instruction, we can use

Add(R3)R2

provided that we load the address LOC into register R3 before the instruction is executed. Inthis case, register R3 is being used as a pointer
to the desired memory location. This raises the issue of how to load a 32-bit address into a register that serves as a pointer to memory
locations. One possibility is to direct the assembler to place the desired adaress in aword location ina data area close to the program. Then
the Relative addressing mode can be used to load the addiress. This assurmes that the index field contiained in the Loed instruction is large
enough 1o reach the location containing the desired address. Another possibility is to use logical and shift instructions to construct the
desired 32-hit address by giving it in parts that are small enough to be specifieble

using the Immediate addressing mode. This issue is considered in more detail for the ARM processor in Chapter 3. All ARM instructions
areencoded intoasingle 32-bitword.

The restriction that an instruction must oocupy only one word has led 1 a style of computers that have become known as reduced
instruction set computers (RISC). The RISC approach introduced other restrictions, such as that all manipulation of data must be done on
operands that are alreadyy in processor registers. This restriction means that the above addition would need a two-instruction sequence
Mowe (R3)R1

AdRLR2

If the Add instruction only has to specify the two registers, itwill need just a portion of a 32-bit word. So, we may provide a more powerful
instruction that uses three operands

AdIR1R2R3

Which performs the operation

R3—[RI+ [R2

Apossible format for such an instruction is shown in Figure 2.39¢. OF course, the processor has to be able to deal with such three-operand
instructions. In an instruction set where all arithmetic and logical operations use only register operands, the only memory references are
made to loadistore the operands into/from the processor regjisters.

ARITHMETIC Addition & Subtraction of Signed numbers

The following fig shows the logic truth table for the sum and carry-out fundions for adding equally weighted
bits Xj and Yj in two numbers X and Y. The figure also shows logic expressions for these functions, along
with an example of addition of the 4-bit unsigned numbers 7 and 6. Note that each stage of the addition
process must accommodate a carry-in bit. We use G to represent the carry-in to the ith stage, which is the
same as the carry-out from the (7 -1)st stage.

Camy-in c,

L
3

Cin

P P PO OO O
P O OFr kB O O
O kP OFr OFr O
B O O kP O F 1k O
B B P O Fr OO O

= KGR G +XTE +XYC = 0 00

Cw = YiGi* XG + X3y,
E xample:
X 7 0 1| 1 |1 X; Camyin
FY = 46 = +,0 1], 1,/0, :E”CO_L't e Vig-—— ¢
7 3 T 1] 0 |1 # T '
Legend for stage i

The logic expression for Sjin Fig can be implemented with a 3-input XOR gate & the carry-out fundion,
Gj+l, is implemented with a two-level AND-OR logic drauit. A convenient symbol for the complete drauit
for a single stage of addition, called afull adder (FA), is also shown in the figure.

A cascaded connection of n full adder blodks, as shown in Fig b, can be used to add two n-bit numbers.

Since the carries must propagate, or ripple, through this cascade, the configuration is clled an n-bit

nipple-carry adder.

The canry-in, Co, into the least-significant-bit (LSB) position provides a convenient means of adding 1 toa
number. For ex, forming the 2's-complement of a number involves adding 1 to the 1's-complement of
the number; The carry signals are also useful for interconnecting k adders to form an adder capable of
handling input numbers that are kn bits long, as shown in Fig. c.

ADDITION / SUBTRACTION LOGIC UNIT

The n-bit adder in following Fig can be used to add 2's-complement numbers X and Y, where the Xn-/ and
Yn-/ bits are the sign bits. Overflow can only occur when the signs of the two operands are the same

In order to perform the subtraction operation X —Y on 2's-complement numbers X and Y, we form the 2's-
complement of Y and add it to X. The logic drauit network shown in Fig. can be used to perform either
addition or subtraction based on the value applied to the Add/Sub input control line, This line is set to 0 for
addition, applying the Y vedtor unchanged to one of the adder inputs along with a carry-in signal, Co, of O.
When the Add/Sub control line is set to 1, the Y vedtor is 1 's-complemented by the XOR gates and Co is
set to 1 to complete the 2's-complementation of Y

Yn-1 Y1 Yo
|_ N Add/Sul
Xn-1 X1 Xp li: R |

T— control

c n-bit adder
n \ C
0

Figure 6.3. Binary addition-subtraction logic n&kw

Design of Fast Adders

The n bit ripple carry adder has much delay in developing its outputs, So to Sn-1 & Cn.The delay through a
network of logic gates depends on the integrated drauit eledronic technology and on the number of gates
in the paths from inputs to outputs. The delay through any combinational logic network constructed from
gates in a partiaular technology is determined by adding up the number of logic-gate delays along the
longest signal propagation path through the network. In the case of the n-bit ripple-carry adder; the longest
path is from inputs xo, Yo, and Co at the LSB position to outputs Cn and Sn-1 at the most-significant-bit
(MSB) position.

Using the n bit ripple carry adder Cn -1 is available in 2(n-1) gate delays, and Sn-1 is correct one XOR gate
delay later: The final carry-out, Cn, is available after 2n gate delays. Therefore, if a ripple-carry ad er is used
to implement the addition/subtraction unit, all sum bits are available in 2n gate delays.

Two approaches can be taken to reduce delay in adders.

The first approach is to use the fastest possible elecronic technology in implementing the ripple-carry logic
design.

The second approach is to use an augmented logic gate network structure that is larger than that of ripple
carry adder. We will desaribe second approach in the next sedtion.

Carry -Lookahead Addition

A fast adder drauit must speed up the generation of the carry signals. The logic expressions for S; (sum) and
G+ (c@rry-out) of stage i are

Si=Xi @Y &G
and
Cu=XYi+ XG+YGC
Factoring the second equation into
Gu=XYi+ X+ Y)G
we aan write Gnu=G +PG
where G =XYi and P, =Xi+Yi

The expressions G and P are called the generate and propagate fundions for stage i. If the generate
function for stage i is equal to 1, then G+ = 1, independent of the input carry, C. This occurs when both X
and Yiare 1. The propagate function means that an input carry will produce an output carry when either Xiis
lorYiis 1. Al G and P fundions can be formed independently and in parallel in one logic-gate delay after
the X and Y vedtors are applied to the inputs of an n-bit adder. Each bit stage contains an AND gate to form
G, an OR gate to form P, and a three-input XOR gate to form S A simpler drauit can be derived by

Ci

observing that an adequate propagate fundion can be realized as P = X; @Y;, which differs from P =X + Y/
only when X = Y; = 1. But, in this case G = 1, so it does not matter whether Aiis 0 or 1. Then, using a 1
cascade of two 2-input XOR gates to realize the 3-input XOR fundion, the basic cell B in Fig can be used in
each bit stage.Expanding Gi in terms of / -1 subsaripted variables and substituting into the G +1 expression,
weobtain G =G + PG + PPAHCu
Continuing this type of expansion, the final expression for any carry variable is
Cw=Gi+ PG+ PP.Giz+ .,. +PPy,., PiGo+PP....... PG
Thus, all carries can be obtained three gate delays after the input signals X, Y, and Co are applied because
only one gate delay is needed to develop all A and Gi signals, followed by two gate delays in the AND-OR
drauit for G + 1. After a further XOR gate delay, all sum bits are available. Therefore, independent of n, the
n-bit addition process requires only four gate delays.Let us consider the design of a 4-bit adder: The carries
can be implemented as

CG=G+ P

G = Gi + PiGo + PiPoCo
G =G+ P.Gi + PP:1 Go + PoP: PiCo
C4 = G3 + PGz + PsPGi + P3 PoP1 Go + PsPoPiPoCo

The complete 4-bit adder is shown below. The carries are implemented in the blodk labeled
carry look ahead logic. An adder implemented in this form is called a carry-lookahead adder. Delay through
the adder is 3 gate delays for all carry bits and 4 gate delays for all sum bits. In comparison, note that a 4-bit
ripple-carry adder requires 7 gate delays for S3 and 8 gate delays for C4.

X151 Y512 Xns Yus X74 Y4 X30 Y30
C]2 Cg C4
-— 4-bitadder - 4-bitadder - 4-bitadder - 4-bitadder Co
)) 4 HR
S5 S18 S74 S30
Gy’ P, G, P, G, P, G, P,
T v T v | B 4
I Carry-ookahead logic

G()" P()"

MULTIPLICATION OF POSITIVE NUMBERS

The usual algorithm for multiplying integers by hand is illustrated in fig. for the binary system. This
algorithm applies to unsigned numbers and to positive signed numbers. The product of two n-digit
numbers can be accommodated in 2n digits, so the product of the two 4-bit numbers in this example fits
into 8 bits. In the binary system, multiplication of the multiplicand by one bit of the multiplier is easy. If the
multiplier bit is 1, the multiplicand is entered in the appropriate position to be added to the partial product.
If the multiplier bit is 0, then Os are entered.
Binary multiplication of positive operands can be implemented in a Combinational,
two-dimensional logic array, as shown in Fig. The main component in each cell is a
full adder FA. The AND gate in each cell determines whether a multiplicand bit, m j,
is added to the incoming partial-product bit, based on the value of the multiplier bit
gi.each row i, where 0<i<3, adds the multiplicand to the incomming partial prodoct
if go=1.If g = 0, Pp is passed vertically downward unchanged. PPO is all Os, and
PP4 is the desired product. The multiplicand is shifted left one position per row by
the diagonal signal path.
This Two dimensional logic array for mutiplication is suitable only when the numbers
are small. So, when we consider long numbers, we are using add & shift method.
ADD & SHIFT METHOD
In this method, three the following 4 registers are used.

1. Register Q for storing Multiplier.

2. Register M for storing Multiplicand.

3. Register C for storing Carry.

4. Register A for temporary storage.(initially set to 0)
The h/w for for implementing add & shift method is shown in the fig. Initially,
registers A & C are set to 0 & Register Q is loaded with multiplier & register M is
loaded with Multiplicand.
Steps: Do n times

1. If the LSB of register Q is 1, then add M to A storing the result in A & shift C,A

& Q in parallel right one binry position.
2. If the LSB of register Q is 0, then shift C,A & Q in parallel right one binry

position.

b).

Booth algorithm

A powerful algorithm for signed number multiplication.

e It genaretes 2*n bit product.

e It treats both +ve & -ve numbers uniformly.

e The Booths technique for recording multiplier is shown below.

Bit i Bit i-1 Selected bit For multiplicant

0 0 0

0 1 +1

1 0 -1

1 1 0

ex .

1. + 13 011?1 : 01101

- 06 * 11010 0-1+1-10

000000000
11110011
0001101
110011
00000

1110110010 (-78)

2. - 02 11110 :: 11110

- 02 * 11110 000-10
000000000
00000010
0000000
000000
00000
100 (+04)
101

3. + 13 01101 :: 01101
+ 09 * 01001 1-10+1-1
111110011
00001101
0000000
110011

01101
001110101 (-78)

Fast Multiplication
e A technique for speeding up of multiplication operation.
e It guarantees that the Max. number of summands that must be added is n/2
for n bit operands.

e This technique is called as bit pair recording.

For ex: consider multiplication between 13 & -6. By booth algorithm the multiplier -6
is written as
-6 sign extensione—— 1 11010 0—» Assume

00-1+1-10
The pair (+1,-1) is equivalent to (0,+1) i.e instead of adding - 1 times the
multiplicand at position i to +1 * M at position i+1,the same result is obtained by
adding +1*M at position i. In this technique two bits are examined at a time &
multiplication is done accordingly.

The following table is used for selecting the bits for multiplier.

Multipliet bit pair Multiplier bit on right selected bit for Q
i+1 i i-1
0 0 0 0

0 0 1 +1

0 1 0 +1
0 1 1 +2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0
13 * -6 > 01101
0-1-2
111100110
1110011
00000
1110110010
Integer Division
The following fig implements the restoring division technique.
Shift left
a, |a,.1 avsw ay q,.1 "av q
A DividendQ
Quotiert
setting
/<):
n +1-bit Add/Subtract
aer < -
Control
\/‘\l: sequencer
0 [My_gf e my
DivisorM ‘

An n-bit positive divisor is loaded into register M and an n-bit positive dividend is loaded into register Q at the

start of the operation. Register A is set to 0. After the division is complete, the n-bit quotient is in register Q
and the remainder is in register A. The required subtradions are performed by using 2's-complement
arithmetic. The extra bit position at the left end of both A and M accommodates the sign bit during
subtractions.

The following algorithm performs restoring division.

Do the following n times:
1. Shift Aand Q left one binary position.
2. Subtract M from A, and place the answer badk in A.

3. Ifthesignof Ais 1, set qoto 0 and add M badk to A (that is, restore A); otherwise, set qo to 1.

A restoring division example : 8/3

M = 00011
A Q

00000 1000
Shift 00001 oo(| ~
Sub 11101
Set q0 11110 0000 First Cycle
Restore 00011

00001 0000 >
Shift 00010 oo] —\
Sub 11101
Set q0 11111 0000 | Second cycle
Restore 00011 >

00010 0000
shift 00100 oo(])
Sub 11101 P Third Cycle
Set q0 00001 0001
Shift 00010 001] =<
Sub 11101

.

Set q0

Restore

11111
00011
00010

LRé/m_aijnder

Non Restoring Division

0010

0010

&SGXEéﬁt

The following algorithm gives the steps for nonrestoring division.

Step 1: Do the following n times:

Fourth Cycle

1. Ifthe sign of Ais O, shift A and Q left one bit position and subtract M from
A; otherwise, shift Aand Q leftand add Mto A.
2. Now, ifthe sign of Ais 0, set go to 1; otherwise, set go to O.

Step 2: Ifthesignof Ais 1, add Mto A.

Ex:8/3

M = 00011

Shift
Sub
Set q0
Shift
Add
Set q0
Shift
Add
Set q0
Shift
Sub
Set q0
Add

00000
00001
11101
11110
11100
00011
11111
11110
00011
00001
00010
11101
11111
00011

1000
oo(]

0000
oo(]

0000
oo

0001
oo]

0010

\J

\J

—

—

—

>

First Cycle

Second cycle

Third Cycle

Fourth Cycle

00010 0010

LRé/m_ai)nder mt

Floating point numbers & Operations

Consider two floating point numbers
6.0247 x 105 & 6.6254 x 10%

Hence, we need to easily accommodate both very large integers and very small fractions. To do this, a
computer must be able to represent numbers and operate on them in such a way that the position of the
binary point is variable and is automatically adjusted as computation proceeds. In such a case, the binary
point is said to float, and the numbers are called floating-point numbers. This distinguishes them from fixed-
point numbers, whaose binary point is always in the same position.

Because the position of the binary point in a floating-point number is variable, it must be given expliatly in
the floating-point representation.These numbers consists of five significant digits. The scale factors (102 &
107) indicate the position of the dedmal point with respect to the significant digits. By convention, when the
dedmal point is placed to the right of the first (nonzero) significant digit, the number is said to be normalized.
We can define a floating-point number representation as one in which a number is represented by its sign, a
string of significant digits, commonly called the mantissa, and an exponent to an implied base for the scale
factor:

The format for representing floating point number is shown below.

32 bits
S 7hitSigned Exporet + 2AbjtMertisa
> 0 +e
1--— -ve
Ex:+ 0.001....ccovrreennas * 2 9 unnormalized)

0 (0001001 + 001

+ 0.1, * 27(Normalized)

ARITHMETIC OPERATIONS ON FIOATING POINT NUMBERS
Add/Subtract Rule

1. Choose the number with the smaller exponent and shift its mantissa right a number

of steps equal to the difference in exponents.
2. Set the exponent of the result equal to the larger exponent.
3. Perform addition/subtraction on the mantissas and determine the sign of the resullt.

4, Normalize the resulting value, if necessary.

BEx: Additon

2.9400 * 102 0.0294 * 10*

——
43100 * 10* + 43100 * 10*
43394 * 10*
Subtradtion
2.9400 * 102 0.0294 * 10*
43100 * 10* - 4.3100 * 10*
- 4.2806 * 10*

Multiply Rule

1. Addthe exponents.
2. Multiply the mantissas and determine the sign of the result.
3. Normalize the resulting value, if necessary.

Ex: 720.56 * 10° *420.66 * 10° =303110,7696 * 108

Divide Rule

1. Subtract the exponents.
2. Divide the mantissas and determine the sign of the resullt.
3. Normalize the resulting value, if necessary.

Ex: 720.56 * 10° /420.66 * 10° =1.7129* 103

The floating point addition & subtraction unit is shown the fig.
The first step is to compare exponents to determine how far to shift the mantissa of the number with the
smaller exponent. The shift-count value, n, is determined by the 8-bit subtractor drauit in the upper left
comer of the figure. The magnitude of the difference Ea -Eb, or n, is sent to the SHIFTER unit. The sign of
the difference that results from comparing exponents determines which mantissa is to be shifted.
Therefore, in step 1, the sign is sent to the SWAP network in the upper right comer of Fig. If the sign is O,
then Ea>Eb and the mantissas MA and MB are sent straight through the SWAP network. This results in MB
being sent to the SHIFTER, to be shifted n positions to the right. The other mantissa, M4, is sent directly to
the mantissa adder/subtractor. If the sign is 1, then Eb > Ea and the mantissas are swapped before they
are sent to the SHIFTER.
Step 2 is performed by the two-way multiplexer, MUX, near the bottom left comer of the fig. The exponent
of the result, £, is tentatively determined as Ea if Ea> Eb, or Eb if Eb > Ea, based on the sign of the
difference resulting from comparing exponents in step 1.
Step 3 involves the major component, the mantissa adder/subtractor in the middle of the figure. The
CONTROL logic determines whether the mantissas are to be added or subtracted. This is dedded by the
signs of the operands (SA and SB) and the operation (Add or Subtract) that is to be performed on the
operands. The CON TROL logic also determines the sign of the result, SR.
Step 4 of the Add/Subtract rule consists of normalizing the result of step 3, mantissa M. The number of
leading zeros in M determines the number of bit shifts, X, to be applied to M. The normalized value is
truncated to generate the 24-bit mantissa, MR, of the result. The value X is also subtracted from the
tentative result exponent £'to generate the true result exponent, £
IEEE Standard for Floating-point numbers

e This standard was developed by the Institute of Electrical & Electronics

Engineers(IEE).
e This standard was developed in order to provide the portability for

numerically oriented programs.

e This standard was developed to encourage the development of high quality
software.
The basic format sizes are :
e 32 bit (Single Precision Format)

e 64 bit (Double Precision Format)

The format for single precison number is shown below.
32 bits

A

v

S 8hitSigred EXonei(E) # BbitMartissa

*> 0-- +ve
1--—- -ve
Value represented = + 1.M * 2 E1-127

The sign of the number is given in the first bit, followed by a representation for the exponent (to the base 2)

of the scale factor: Instead of the signed exponent, E, the value actually stored in the exponent field is an

unsigned integer E' = E + 127.This is called the excess-127 format. Thus, E'is in the range 0 <= E'<= 255.

The last 23 bits represent the mantissa. Since binary normalization is used, the most significant bit of the
mantissa is always equal to 1. This bit is not expliatly represented; it is assumed to be to the immediate left
of the binary point. Hence, the 23 bits stored in the M field acdually represent the fractional part of the
mantissa, that is, the bits to the right of the binary point. An example of a single-predsion floating-point
number is shown below. Ex: +1.001010................. * &

0 00101000(40) 0 011010 J—

The format for double precision number is shown below.

64 bits

A

v

S 11bit Signed ExporetE) L 5 bitMartissa

> 0--—- +we
1-—-—- -ve
11 bit excess —1023 exponent

Value represented = + 1.M * 2 E1-1023

BASIC PROCESSING UNIT
FUNDAMENTAL CONCEPTS
The instructions of a program are loaded in sequential locations in main memory. To
execute a program, processor fetches one instruction at a time and performs the
operations specified. The processor keeps track of the address of the memory
location containing the next instruction using a dedicated register, called the
program counter (PC). After fetching an instruction, the contents of PC are updated
to point to the next instruction in the sequence. A branch instruction loads a new
address into the PC.
Let us assume an instruction of 4 bytes and stored in one memory word. To execute an instruction, the
processor has to perform the following 3 types:
1. Fetch the contents of the memory location pointed to by the PC. The contents of this location
are interpreted as instrudion to be executed. They are loaded into another spedal purpose
register is called instruction register (IR). Symballically, this operation is denoted as

IR <*—[PC].
2. Since , the memory is byte addressable, inaement the contents of the PCby 4 to get the next
word in the memory. PC «— PC+4
3. Carryout the adions spedfied by the instrucion in the IR.

If the instruction occupies more than one word, step 1and 2 must be repeated so as to fetch the complete
instruction. These two steps are usually referred as fetch phase; step 3 constitutes the execution phase.

To know how these operations are implemented, we need to know the intemal structure of the processor.
The various fundional blocks of the CPU can be organized and interconnected in a variety of ways. The
following Fig. shows a simple organisation in which the arithmetic and logic unit(ALU) and all the registers
are connected using a single common bus. This bus is intemal to the processor.

The data and address lines of the external memory bus are connected to the intemal processor bus via
memory data register(MDR)and the memory address register(MAR).This is also shown in fig. Data may be
loaded into MDR either from the memory bus or from intemal processor bus. Data stored in MDR may be
placed on either bus.The input of the MAR is connected to the intemal bus and its output is connedted to the
external bus.The control lines of the memory bus are connected to the instruction decoder and control logic
block. This unit is responsible for issuing the signals that control the operation of all the units inside the
processor and for interacting with the memory bus.

The number and function of processor register RO through R(n-1) vary from processor to processor.Some
may be general purpose; others may spedal purpose like stadk pointer or index registers.Three registers Y,Z
& TEMP are transparent to the programmmer ,i.e, they are never referred directly by an instruction. They are
used by the processor for temporary storage during execution of some instructions. The multiplexer MUX

seledts either the output of the register Y or a constant value 4.This is provided as input A of the ALU.The
constant is used to inaement the contents of PC. The B input of the ALU is obtained directly from the
processor bus. Thus, the ‘select’ line of MUX can be either seled4 or select Y. The registers, the ALU and the
inter conneding bus are collectively referred to as ‘data path’.
Generally an instrudion can be executed by performing one or more of the following operations in some
spedfied sequence:

1.Transfer a word of data from one processor register to other or to the ALU.

2.Perform an arithmetic or logic operation and store the result in a processor register:

3.Fetch the contents of a given memory location and load them into a processor

register.

4.Store a word of data from processor register into a given memory location

Register gating and timing of data transfers
Instruction exeaution involves sequence of steps in which data are transferred from one register to

ancther: For each register, two control signals are used to place the contents of that register on the bus or to
load the data on the bus into the register . The input and output of register R are connected to the bus via
switches controlled by the signals Rin and Rox.These are also called gating signals. This is shown in the
following fig. When Riin is set to 1, the data on the bus are loaded into Ri and when Rax is set to 1,the
contents of Ri are placed on the bus. When R Or Rinis 0,data cannot be transferred between the processor
bus and registers.
Register transfers
Consider an example of transferring data from register R1 to Ra.The following actions are needed:

1.Enable the output of register R: by making Riat=1.This places the contents of R: on the processor

bus.

2.Enable the input of register R4 by setting Ran=1. This loads the data from the intemal bus into

register Ra.
Performing an arithmetic or logic operation
The ALU is a combinational drauit which performs arithmatic and logic operations on two operands applied
to its A and B inputs. One of the operands is the output of the MUX and other operand is obtained directly
from the processor bus. The result is stored temporarily in register Z.
Consider an example of adding the contents of register R1 to R2 and storing the result in R3. The sequence
of operations are:
1. Rlout,Yin ;Transfers the contents of R1 to Y register
2. R2out, select Y,Add,Zin ;R2 contents are transferred direcdy to ALU B

input.The numbers are added & Result is stored in
register Z.

3. Zout,R3in ;Sum is transferred to register R3.

The signals are activated for the duration of the dodk cyde comresponding to that step, with all other signals

deadtivated during that time .

In step 1, output of register R1 and inputs of register Y are enabled, causing the contents of R1 to be

transferred via the bus to'Y register:

In step 2, select Y signal of MUX is selected, so the contents of Y register is transferred to input A of the ALU.

Also, contents of R2 are gated onto the bus and to the input B of ALU.The add control signal of ALU is set,

and hence addition is performed. The result is moved into register Z since Zin=1.

In step 3, cotents of Z are transferred to destination register R3 using Zout and R3in signals. This is an

additional step, since only one register output can be enabled during a dock cyde in a single bus structure.
Fetching a word from memory

To fetch any information (instruction or operand) from memory, the processor has to spedfy the address of

memory location where this word is stored and issue aread control signal. The processor transfers the

required address to MAR from PC. The output of MAR is connected to the address lines of the memory bus.

The processor uses the control lines of the memory bus to indicate that a read operation is needed.The

processor usually waits until it receives an indication from the memory that the requested read operation

has been completed. A signal called memory fundion completed[MFC] is used for this purpose . The

memory sets this signal to 1 to indicate that the content of the addressed location are available on the data

lines of the memory bus. Now, the CPU reads the information into MDR, from where it can be transferred to

other registers in the processor.

Let us assume that register R1 is having the address of the memory location to be accessed and the

information from that memory location is to be loaded into register R2. the operation instrudtion is move

(R1),R2.

The sequence of steps are:

1. MARe——[R1]
2 Start a memory read operation
3. Wait for MFC signal from memory
4 Load MDR from extemal bus
5. R2 <«—MDR]
Consider that the output of MAR is enabled all time. When a new address is loaded into MAR, it will appear
on the memory bus at the begining of next dodk cyde as shown in fig.

A read control signal is activated at the same time MAR is loaded. While waiting for a response from
memory. MDRInE signal can be adiivated.Thus, the information received from memory are loaded into MDR
at the end of dock cyde in which the MFC signal is received . In the next cyde, MDRout is adtivated to
transfer the data to register R2. Therfore a memory location read operation requires three steps desaribed
by the sequence as below.

1. Rlout, MARIn,Read

2. MDRIinE, WMFC

3. MDRout,R2in
Where WMFC is the control signal that causes the processor’s control dircuitary to wait for the arrival of MFC
signal.
Storing a word in memory
The procedure is as follows: The desired address is loaded into MAR. Then, the data to be written is loaded
into MDR and a write command is issued. Considerfor example, that the data is in register R2 and the
address of the memory location (where data is to be stored)is in register R1. Then, to store the contents of
register R2 in memory, the instrudion is move R2 ,(R1). This requires the following three steps:

1. Rlout,MARIn

2. R2out, MDRin,Write

3. MDRoutE, WMFC
The operation spedfied by any instrudtion is implemented in two phases: fetch phase and exeaute phase.
The fetch phase always requires three steps. The number of steps for execute phase will vary depending on
the type of operation. This is illustrated in examples below.

Write the complete control sequence
for the instruction move(Rsrc),Rdst
Solution : This instruction copies the contents of memory location pointed to by Rsrc into Rdst. This is
memory read operation. This will require the following actions
1. Fetch the instruction
2. Fetch the operand(the contents of the memory location pointed to by Rsrc)
3. Transfer the data to Rdst

The control sequence is written below.

1. PCout,MARIin,Read,Select 4,Add,Zin
2. Zout,Pdn,Yin WMFC

3. MDRout,IRin

4. Rsrcout,MARin,Read

5. MDRin,WMFC

6. MDRout,Rdstin,End.

Execution of a complete instruction
Consider , for example, the exeaution of the instruction Add(R3),R1

This instruction adds the contents of a memory location pointed by R3 to the contents of a register R1 and
places the result in R1. Following actions are needed:
1. Fetch theinstruction
2. Fetch the first operand from memory
3. Perform addition
4. StoretheresultinR1.
The following sequence of control steps are required to perform these operations for the single bus structure.
1. PCout,MARIin,Read,Select 4,Add,Zin
Zout,Pan,Yin, WMFC
MDRout,Irin
R3 out,MARIin,Read
Riout,Yin, WMFC
MDRout,Select Y, Add,Zin
Zout,R1in,End.
Step 1 : Fetch operation is initiated by loading the address in PC into MAR and
Sending a read request to memory. Select signal is set to seled4, which
causes the MUX to select constant 4. This value is added to the operand atinput b
(contents of PC) and the result is store in register Z.
Step 2 : The update value in Z is moved to PC(to point to the next address)

N o »un M W DN

While waiting for the memory to respond.
Step 3 : Once MFC signal is received from memory, the fetched instruction will
Be moved into MDR and then to IR.
These three steps constitute instrudion fetch phase.

Step 4 : The instruction decoding drauit interprets the contents of IR and the
Processor starts the exeaution phase. Contents of R3(address of the
Operand) are loaded into MAR and a read signal is issued

Step 5 : While waiting for the memory to respond, contents of R1 are transferred
IntoY register:

Step 6 : The memory provides data on the bus, which is moved into MDR and
Onto the B input of the ALU. The contents of Y (R1 contents) are
Gated into the A input of ALU using select Y signal of MUX.Add
Control aignal is activated.After the addition , the result is transferred to Z.

Step 7 : Finally, the sum is moved out of register Z into register R1. The end
Signal causes a new instrudtion fetch cyde to begin by retuming to
stepl
Note: 1.The signal Yin in step 2 is required to save PC address while computing branch target address.

Write the control sequence to execute the instruction
Add(R3)+,R1
Solution : This instruction adds the contents of memory loction pointed to by R3, to
register R1. R3 is also incremented.
The control sequence is written below.
1. PCout,MARIn,Read,Select 4,Add,Zin
Zout,Pdn,Yin, WMFC
MDRout,Irin
R3 out,MARIn,Read,Select 4, Add,Zin
Zout,R3in
Rilout,Yin, WMFC
MDRout,Select Y, Add,Zin
8. Zout,R1in,End.
Branch instructions
A branch instrudion replaces the contents of PC with the branch target address. This address is obtained by
adding an offset X which is given in the brach instruction,to the current value of PC. Branch instructions can

N o »un kW DN

be of two types: unconditional and conditional. The following Fig. shows the control sequence to implement
an unconditional branch instruction.

1. PCout,MARIin,Read,Select 4,Add,Zin

2. Zout,Pdn,Yin, WMFC

3. MDRout,IRin

4. Offsetfield of IRout,, Add,Zin

5. Zout,PCin,End.
The fetch phase ends in step 3. The offset value is extracted from the IR by the instruction decoding drcuiit.
Since the updated value of PC is already available in register Y, the offset X is gated on to the bus in step 4,
and addition operation is performed to compute the new target address. Finally, in step 5 this target address
is moved into PC.
The offset X is the difference between the branch target address and the address immediately following the
branch instrudtion. For example, if th ebranch instrudtion is at location 1000 and branch target address is

1100,then the value of X must be 96, since the PC will be containing the address 1004 after fetching the
instruction at location 1000.
Let us consider a conditional branch. Before the branching takes place, the states of the condition codes are
verified. For example, if we want to implement a Branch-on-negative instrudtion, then step 4 is changed to
Offset-field-of-IRout, Add, Zin, If N=0, then End.
Thus, if N=0,processor retums to step 1 to perform a new fetch operation. If N=1, step 5 is performed to
load a new value into PC and branching takes place.
Multiple bus organization
The following Fig. shows three-bus organization of the CPU. All general purpose registers are combined into
a single block called register file. The register file has three parts: two outputs allowing the contents of two
different registers to be simultaneously placed on the buses A and B. The third part allows the data on bus C
to be loaded into a third register during the same dock cyde.
Buses A and B can transfer two source operands to A and B inputs of the ALU. The
result is transferred to the destination over C bus during the same cycle. Therefore,
a three address instruction of the form OP Rsrcl, Rsrc2,Rdst can be executed in one
clock cycle after the fetch phase. Therefore, there is no need for temporary registers
Yand Z.
Ancther feature is the provision for increment or unit to update the value of PC, which eliminates the need to
add 4 to PC using the ALU.
Consider a three operand instruction
AddR1,R2,R3
The control serquence is shown below.
1. Poout,R=B,MARin,Read,Inc PC
2. WMFC
3. MDRout,R=B,IRin
4. Rlout,R2out,Select A,Add,R3in,End.
Step 1 : Contents of PC are passed through ALU using R=B control signal and loaded into MAR to
start a memory read operation.PC is incemented by 4 to point to the next instrudtion in the
sequence.
Step 2 : Processor waits for MFC signal from memory.
Step 3 : The instrudion code is received in MDR and transferred to IR.This completes the fetch
phase.
Step 4 : The instruction is decoded and the add operation takes place in single step.

A complete processor

The design objedtive for any processor is to reduce the number of dodk cydes required to execute an
instruction. Ideally, we expect an operation to be completed in one cyde. Towards this goal, instead of a
single bus structure, we designed a multi bus structure.
Performance improvement can also be achieved if fetch and exeaute phases can be overlapped. Latest
processors indude an instrudtion unit, which fetches many instructions in advance and places them in a
ready queue. Other enhancement indudes having multiple fundtional units such as integer unit and floating
point unit which operate on respective type of data in parallel. A powerful processor can be designed using
the structure shown below.
As shown, the processors may have separate instrudion cache and data cache for storing instructions and
operands. Only if information is not available in cache, processor has to access the main memory.
The processor is connected to the system bus and to the memory by means of a bus interface. Using
multiple units and pipelining, it is possible to design very powerful processors. Processors that exeaute
instrudtions at a rate exceeding one instrudion per dock cyde are called super scalar processors.
Hardwired control
To exeaute the instrudiions, the processor must generate control signals in a proper sequence. Cconsider the
sequence of control signals Add(R3),R1. Seven non overlapping time slots are required for exeauting the
instruction. Each step is completed in one dock period. Hence, to ensure proper operation of the processor;
effident design of control unit is very much necessary. The control design approaches fall into two categories:

1. Hardwired control and
2. Miaoprogrammed control

The following fig shows the organization of the hardwired control unit.

CLK
Cok |F——{ Contolsep
counter

Step decoder
1 T
T, T, eee T,
INS 1 -]
I - BExternal
INS , . inpus
——— | . — .
Instruction D
- decoder .]
* “ <——— Condition
————— ’ codes
INS |,

Since each step in the sequence is performed in one dock cyde, a counter driven by a dodk signal, CLK, can
be used to keep tradk of the control steps. The required control signals are determined by the following
information:

1. Contents of control step counter

2. Contents of instruction register

3. Contents of condition code flags

4. Bxtemnal input signal, such as MFC, and interrupt requests.
The encoder block is a combinational circuit that generates required control outputs,
depending n the state of all its inputs. The step decoder provides a seperate signal
line for each step in the control sequence. The output of the instruction decoder
consists of a separate line for each machine instruction. For any instruction loaded in
IR, one of the output lines INS1 through INSm is set to 1 & all other lines are set to
0. The input signals to the encoder block are combined to generate individual
control signals Zin,Add,PCout and so on.
An example of generating a control signal Zinis shown below. The logic function is
Zin=T1+T6.ADD+T4.BR+........

The signal Zin is asserted during time slot T1 for all instructions, T6 during an Add instruction and so on.

Branch Add

Similarty, the End control signal is generated from the logic function,
END=T7.ADD+T5.BR+(T5.N+T4.N).BRN+......

The hardware to generate the End signal is shown below.

Microprogrammed control
Here control signals are generated by a program similar to machine language programs. Following

terminologies are used in this technique.

Control word
A control word, CW, is a bit pattem of Os and 1s. Individual bits a control word represent the various control
signals like Add, End, Zin and so on. Each of the control sequence of an instruction defines a unique
combination of 1s and Os in the control word. The control words correspond to the 7 steps of add (R3),R1

are shown below.

ot al Sele at, . |ox W
Migo- | pc pc AR o DR s MECH I, Zwt R RL Ra | MF BN
1 0/ 1/1/1/0/0 0/ 1/ 1/1/0 00 00 0
2 1 0/0/0 0/ 0 1/0 /00 100 0 1 0
3 0/ 0/o/o/1/1/0/ 0 0/0 000000
4 0/ 0/1/1/0/0/0/ 000 000 100
5 0/ 0/o/o/0/o/1/0 00 0 1/0 0 1|0
6 0/ 0/0o/0o/1/0/0/0/ 11 000000
7 0/ 0/o/o 000000 10 1 0 01

A particular bitis set to 1 in any step, if the corresponding signal appears in that step.

Microinstruction

Individual control words are also referred to as microinstruction.

Micro routine
A sequence of control words corresponding to the control sequence of a machine instruction constitutes the

microroutine.

Control store
The migoroutine for all instrudions in the instruction set of a computer are stored in a spedal memory called

ocontrol store.

Organization of microprogrmmed control unit

A basic structure of the microprogrammed control unit is shown below. The control
unit can generate control signals for any instruction by sequentially reading the
control words of the corresponding microroutine from the control store. To read
sequentially, a microprogram counter(mPC) is used.Everytime a new instruction is
loaded into IR, the output of the block labeled “starting address generator” is loaded
into microprogram counter. Then, microprogram counter is automatically
incremented for each successive instruction fetch. Hence, control signals are
delivered to various parts of the processor in the correct sequence.
The basic organization discussed above cannot handle unconditional or conditional
branching. So, we have to use branch microinstructions. These microinstructions
specify the branch address. They also indicate which external inputs, conditional
codes or bits of the IR should be checked as a condition for branching.
For example, the instruction, branch<0 (branch-on-negative) can be implemented by
a micro routine shown below.

0. PCout,MARIn,Read,Select 4,Add,Zin

1. Zout,Pdn,Yin, WMFC

2. MDRout,Irn

3. Branch to starting address of appropriate micoroutine

40. IfN = 0 ,then branch to micoinstruction 0

41. Offset field of Irout,Select Y, Add, Zin

42. Zout,Pdn,End.
After loading this instruction into IR, a branch microinstruction transfers control to the corresponding
microroutine starting at some location,(say 40) in the control store. This address is the output of the starting
address generator block. A migoinstruction at location 40 checks the N bit of the condition code. If this
bit=0, a branch takes place to location 0 to fetch a new machine instrudtion. Otherwise, the next instruction
at location 41 is executed to put the branch target address into register Z.

The modified control unit is shown below.

Starting
IR ——> addess
generator

Condition Codes
Clock ——m» uPC :
[<+
Control]
store —:> CW

Starting & branch address generator block accepts inputs from external inputs,

condition codes as well as from IR.In this CU, the Mpc is incremented every time a

new instruction is fetched from control store, except in lthe following cases:
1. When a new instruction is loaded into IR, the Mpc is loaded with the starting
address of the microroutine for that instruction.
2. When a branch microinstruction is encountered and branch condition is
satisfied , the Mpc is loaded with the branch address.
3. When an End microinstruction is encountered, thr Mpc is loaded with the
address of first CW in microroutine for fetch cycle.
Microinstruction Format:
A simple way to charectarize microinstructions is to assign a one bit position to each
control signal in CW. This results in long Control words sinse the number of control
signals required for an application may be large. Also , only a few bits in the CW are
set to 1 & other bits are set to 0.
Let us assume that the processor contains 4 GPRs, so 8 gating signals are required

just to transfer the data IN & OUT of these registers. Other gating signals are

required for other register as well. We need to specify ALU functions. Assuming 16
functions like add, sub, ..etc 16 control signals are needed. Finally, additional control
signals like read, write &WMFC etc are also needed. Totallly around 40 control
signals are required. Now the length of CW is 40 bits.Since all bits are not activeted
simultaneously, this leads to inefficient usage of memory space in the control store.
Also if the control signals are more , the CW becomes too long.

To reduce the length of CW, another formatting scheme is used which is based on
the following two inferences.

1. Most of the control signals are not needed simultaneously in any

microinstruction.

2. Many signals are mutually exlusive & hence cannot be activeted concurrently.
Foe ex. The ALU can perform only one function at a time & all functions are mutually
exclusive to each other. Similarly , read & write signals to the memory can not be
activated simultaneously.

Here we are discussing a new encoding scheme, where instructions can be grouped
according to the functions, such that all mutually exclusive signals are in the same
group. So, instead of bit identification we use group identification, which naturally
reduces number of bits required to specify any microinstruction. This is also called as

Field encoding of microinstructions.

F1 F2 F3 F (53]
4 3 3 bits 4 2
0000:Add 00 : No action
0001:Sub 01 :Read
. 02 :Write
1111: XOR

This structure is based on binary coding scheme. Each field occupies a space large
enough to contain required codes. For ex, the 16 functions of ALU can be specified

using only 4 bits, where as, the earlier scheme 16 bits. Thus, we see that only 20

bits are used to specify around 40 control signals, thus minimizing the space
required in the control store to store the microinstructions. We say that, one micro
operation per group is specified in any microinstruction. But, this type of grouping
require more h/w since bit patterns of each field must be separetely decoded into
individual control signals.
The field encoding tends to provide 2 types of microinstructions:

1. Horizontal

2. Vertical
Vertical organization is higly encoded scheme which reduces the length of control
words. This gives rise to compact codes & specify only a small number of control
functions in each microinstructions.This results in slower operating speeds because
more microinstructions are needed to perform the desired control functions. The
advantage is less h/w is required.
Horizontal organization uses simple encoding scheme & many bits in the
microinstruction. Here many resources can be controlled with a single
microinstruction. This scheme is useful when higher operating speed is desired. Field
encoding is example for this.
Micro program Sequencing
A simple way to charectarize microinstructions is to assign a one bit position to each
control signal in CW. But this scheme has two disadvantages.

1. Requirement of large control store, since each m/c instruction has a separete
microroutine. If the m/c instructions have sevaral addressing modes, a
separete microroutine for each of these combinations may produce
duplication of common parts of the prg. The microprogram should be
organized so that the microroutines share the common parts. This may
require many branch instructions to transfer control among various parts.
This leads to second problem.

2. Program execution time will be longer since more time is required to carry out
the branch instructions.

Let us consider an instruction of the type

Add Src,Rdst
This instruction performs the function of adding the SRC operand to the content of
Rdst & stores the sum in Rdst.We assume that the SRC operand can be specified in

the following addressing modes :

Register addressing mode.
Auto increment addressing mode.

Auto decrement addressing mode.

A W N B

Indexed addressing mode.

The micro program is explained with the help of the following flow chart shown
below. Each box corresponds a microinstruction that controls the transfers &
operations indicated with in the box. The microinstruction is stored at the address
indicated by the number above the top right corner of the box.

Consider the point labelled B(Beta) in flowchart. At this point,a decision is to be
made about branching : if direct mode is specified , instruction at location 170 is
bypassed & control goes to location 171. If indirect mode is specified, then the CW at
location 170 is executed to fetch the operand from memory. This branching is
performed using a technique called bit-ORing.

In this technique, the preceding instructions specify the address 170 & then use an
OR gate to change the least significant bit(LSB) of this address to 1 if direct
addressing mode is specified. This is known is bit-ORing technique.
Microinstruction with next address field

The flowchart contains several branch microinstructions, which perform no useful
operation in the data path. These instructions are needed only to determine the
address of the next microinstruction. More number of such instructions will reduce
the speed of computation. The problem can be solved by modifying the original CU
design built around Mpc. An efficient alternative is to include an address field as part
of every microinstruction to indicate the location next microinstruction to be fetched.
i.e. effectively every microinstruction now behaves like a branch microinstruction.
But this flexibility comes at a cost; additional bits are required in every
microinstruction for the address field. For ex, Consider a computer with 4K
microinstructions, So,12 bits are required for the address field. If the length of CW is
60 bits,1/5 of the control store capacity is to be dedicated to addressing. This
overhead may not be tolerated in some cases.

The main advantage of this scheme is that the need for separate branch
microinstructions is eliminated. Since, each instruction contains the address of the
next instruction, there is no need of a counter to keep track of the addresses. Hence,
Mpc is replaced with a microinstruction address register; this register is loaded from

the next address field of each microinstruction. Thus, a new microprogramming

control structure with microinstruction address register and bit-ORing capability can
now be designed as shown below.

The decoding circuits generate the starting address of a given microroutione on the
basis of opcode in IR.The next address bits are fed through Or gate to
microinstruction address register. The address can be modified depending on the

data in the IR, Condition codes & external inputs.

